【传知代码】知识图谱推理-论文复现

2024-05-30 09:20

本文主要是介绍【传知代码】知识图谱推理-论文复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 方法介绍
  • 核心逻辑
    • 实验条件
    • 数据集
    • 实验步骤
    • 实验结果
  • 核心代码
  • 小结

本文涉及的源码可从知识图谱推理该文章下方附件获取

概述

本研究深入探讨了基于图神经网络(GNN)的知识图谱推理,特别聚焦于传播路径的优化与应用。在智能问答、推荐系统等前沿应用中,知识图谱推理发挥着不可或缺的作用。然而,传统GNN方法在处理大规模知识图谱时,往往面临效率和准确度的双重挑战。为了克服这些局限,本研究提出了一种创新的自适应传播策略AdaProp,并通过与经典的Red-GNN方法进行对比实验,验证了其优越性。

论文名称:AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning
作者:Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han
出处:Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23), August 6–10, 2023, Long Beach, CA, USA
在本论文的基础上添加tensorboard可视化结果
原代码链:https://github.com/LARS-research/AdaProp

方法介绍

通过有效的采样技术来动态调整传播路径,既考虑到查询实体和查询关系的依赖性,又避免在传播过程中涉及过多无关实体,从而提高推理效率并减少计算成本。这将涉及到开发新的采样策略,以确保在扩展传播路径时能够保持对目标答案实体的精确预测。为此,提出了一种名为AdaProp的基于GNN的方法,该算法可以根据给定的查询动态调整传播路径。

在这里插入图片描述

在知识图谱推理领域,传统的方法如全传播、渐进式传播和受限传播都各自有优势和局限。提出的AdaProp方法在效率和性能上对这些传统方法进行了显著的优化。

核心逻辑

实验条件

使用Python环境和PyTorch框架,在单个NVIDIA RTX 3070 GPU上进行,该GPU具有8GB的内存。实验的主要目的是验证AdaProp算法在传导(transductive)和归纳(inductive)设置下的有效性,并分析其各个组成部分在模型性能中的作用。

数据集

family数据集,存放在./transductive/data文件夹下

在这里插入图片描述

实验步骤

step1:安装环境依赖

torch == 1.12.1
torch_scatter == 2.0.9
numpy == 1.21.6
scipy == 1.10.1

step2:进入项目目录,进行训练
在这里插入图片描述

step3:输入tensorboard指令,可视化结果

在这里插入图片描述

在这里插入图片描述

实验结果

在这里插入图片描述

核心代码

# startcheck all output pathscheckPath('./results/')checkPath(f'./results/{dataset}/')checkPath(f'{loader.task_dir}/saveModel/')model = BaseModel(opts, loader)opts.perf_file = f'results/{dataset}/{model.modelName}_perf.txt'print(f'==> perf_file: {opts.perf_file}')config_str = '%.4f, %.4f, %.6f,  %d, %d, %d, %d, %.4f,%s\n' % (opts.lr, opts.decay_rate, opts.lamb, opts.hidden_dim, opts.attn_dim, opts.n_layer, opts.n_batch, opts.dropout,opts.act)print(config_str)with open(opts.perf_file, 'a+') as f:f.write(config_str)if args.weight != None:model.loadModel(args.weight)model._update()model.model.updateTopkNums(opts.n_node_topk)if opts.train:writer = SummaryWriter(log_dir=f'./tensorboard_logs/{dataset}')# training modebest_v_mrr = 0for epoch in range(opts.epoch):epoch_loss = model.train_batch()if epoch_loss is not None:writer.add_scalar('Training Loss', epoch_loss, epoch)else:print("Warning: Skipping logging of Training Loss due to NoneType.")model.train_batch()# eval on val/test setif (epoch + 1) % args.eval_interval == 0:result_dict, out_str = model.evaluate(eval_val=True, eval_test=True)v_mrr, t_mrr = result_dict['v_mrr'], result_dict['t_mrr']writer.add_scalar('Validation MRR', result_dict['v_mrr'], epoch)writer.add_scalar('Validation Hits@1', result_dict['v_h1'], epoch)writer.add_scalar('Validation Hits@10', result_dict['v_h10'], epoch)writer.add_scalar('Test MRR', result_dict['t_mrr'], epoch)writer.add_scalar('Test Hits@1', result_dict['t_h1'], epoch)writer.add_scalar('Test Hits@10', result_dict['t_h10'], epoch)print(out_str)with open(opts.perf_file, 'a+') as f:f.write(out_str)if v_mrr > best_v_mrr:best_v_mrr = v_mrrbest_str = out_strprint(str(epoch) + '\t' + best_str)BestMetricStr = f'ValMRR_{str(v_mrr)[:5]}_TestMRR_{str(t_mrr)[:5]}'model.saveModelToFiles(BestMetricStr, deleteLastFile=False)# show the final resultprint(best_str)writer.close()model.writer.close()

小结

AdaProp的成功并非偶然。其自适应传播策略使得模型能够根据不同的情况调整信息传播策略,从而更加精确地捕获节点之间的关系。这种灵活性是传统GNN所缺乏的,也是AdaProp能够在多个数据集上取得显著提升的关键原因。此外,AdaProp的引入也为知识图谱推理领域带来了新的研究方向和思路,为未来的研究提供了有益的参考。

本研究通过提出AdaProp自适应传播策略,并在多个数据集上进行实验验证,充分证明了其在知识图谱推理中的优越性。AdaProp不仅提高了推理的准确性和效率,还为该领域的未来发展提供了新的方向。未来,我们将继续探索AdaProp的潜力,优化其算法结构,以期在更多领域取得更加卓越的表现。同时,我们也期待更多的研究者能够关注这一领域,共同推动知识图谱推理技术的发展。
在这里插入图片描述

这篇关于【传知代码】知识图谱推理-论文复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016060

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2