【传知代码】知识图谱推理-论文复现

2024-05-30 09:20

本文主要是介绍【传知代码】知识图谱推理-论文复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 方法介绍
  • 核心逻辑
    • 实验条件
    • 数据集
    • 实验步骤
    • 实验结果
  • 核心代码
  • 小结

本文涉及的源码可从知识图谱推理该文章下方附件获取

概述

本研究深入探讨了基于图神经网络(GNN)的知识图谱推理,特别聚焦于传播路径的优化与应用。在智能问答、推荐系统等前沿应用中,知识图谱推理发挥着不可或缺的作用。然而,传统GNN方法在处理大规模知识图谱时,往往面临效率和准确度的双重挑战。为了克服这些局限,本研究提出了一种创新的自适应传播策略AdaProp,并通过与经典的Red-GNN方法进行对比实验,验证了其优越性。

论文名称:AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning
作者:Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han
出处:Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23), August 6–10, 2023, Long Beach, CA, USA
在本论文的基础上添加tensorboard可视化结果
原代码链:https://github.com/LARS-research/AdaProp

方法介绍

通过有效的采样技术来动态调整传播路径,既考虑到查询实体和查询关系的依赖性,又避免在传播过程中涉及过多无关实体,从而提高推理效率并减少计算成本。这将涉及到开发新的采样策略,以确保在扩展传播路径时能够保持对目标答案实体的精确预测。为此,提出了一种名为AdaProp的基于GNN的方法,该算法可以根据给定的查询动态调整传播路径。

在这里插入图片描述

在知识图谱推理领域,传统的方法如全传播、渐进式传播和受限传播都各自有优势和局限。提出的AdaProp方法在效率和性能上对这些传统方法进行了显著的优化。

核心逻辑

实验条件

使用Python环境和PyTorch框架,在单个NVIDIA RTX 3070 GPU上进行,该GPU具有8GB的内存。实验的主要目的是验证AdaProp算法在传导(transductive)和归纳(inductive)设置下的有效性,并分析其各个组成部分在模型性能中的作用。

数据集

family数据集,存放在./transductive/data文件夹下

在这里插入图片描述

实验步骤

step1:安装环境依赖

torch == 1.12.1
torch_scatter == 2.0.9
numpy == 1.21.6
scipy == 1.10.1

step2:进入项目目录,进行训练
在这里插入图片描述

step3:输入tensorboard指令,可视化结果

在这里插入图片描述

在这里插入图片描述

实验结果

在这里插入图片描述

核心代码

# startcheck all output pathscheckPath('./results/')checkPath(f'./results/{dataset}/')checkPath(f'{loader.task_dir}/saveModel/')model = BaseModel(opts, loader)opts.perf_file = f'results/{dataset}/{model.modelName}_perf.txt'print(f'==> perf_file: {opts.perf_file}')config_str = '%.4f, %.4f, %.6f,  %d, %d, %d, %d, %.4f,%s\n' % (opts.lr, opts.decay_rate, opts.lamb, opts.hidden_dim, opts.attn_dim, opts.n_layer, opts.n_batch, opts.dropout,opts.act)print(config_str)with open(opts.perf_file, 'a+') as f:f.write(config_str)if args.weight != None:model.loadModel(args.weight)model._update()model.model.updateTopkNums(opts.n_node_topk)if opts.train:writer = SummaryWriter(log_dir=f'./tensorboard_logs/{dataset}')# training modebest_v_mrr = 0for epoch in range(opts.epoch):epoch_loss = model.train_batch()if epoch_loss is not None:writer.add_scalar('Training Loss', epoch_loss, epoch)else:print("Warning: Skipping logging of Training Loss due to NoneType.")model.train_batch()# eval on val/test setif (epoch + 1) % args.eval_interval == 0:result_dict, out_str = model.evaluate(eval_val=True, eval_test=True)v_mrr, t_mrr = result_dict['v_mrr'], result_dict['t_mrr']writer.add_scalar('Validation MRR', result_dict['v_mrr'], epoch)writer.add_scalar('Validation Hits@1', result_dict['v_h1'], epoch)writer.add_scalar('Validation Hits@10', result_dict['v_h10'], epoch)writer.add_scalar('Test MRR', result_dict['t_mrr'], epoch)writer.add_scalar('Test Hits@1', result_dict['t_h1'], epoch)writer.add_scalar('Test Hits@10', result_dict['t_h10'], epoch)print(out_str)with open(opts.perf_file, 'a+') as f:f.write(out_str)if v_mrr > best_v_mrr:best_v_mrr = v_mrrbest_str = out_strprint(str(epoch) + '\t' + best_str)BestMetricStr = f'ValMRR_{str(v_mrr)[:5]}_TestMRR_{str(t_mrr)[:5]}'model.saveModelToFiles(BestMetricStr, deleteLastFile=False)# show the final resultprint(best_str)writer.close()model.writer.close()

小结

AdaProp的成功并非偶然。其自适应传播策略使得模型能够根据不同的情况调整信息传播策略,从而更加精确地捕获节点之间的关系。这种灵活性是传统GNN所缺乏的,也是AdaProp能够在多个数据集上取得显著提升的关键原因。此外,AdaProp的引入也为知识图谱推理领域带来了新的研究方向和思路,为未来的研究提供了有益的参考。

本研究通过提出AdaProp自适应传播策略,并在多个数据集上进行实验验证,充分证明了其在知识图谱推理中的优越性。AdaProp不仅提高了推理的准确性和效率,还为该领域的未来发展提供了新的方向。未来,我们将继续探索AdaProp的潜力,优化其算法结构,以期在更多领域取得更加卓越的表现。同时,我们也期待更多的研究者能够关注这一领域,共同推动知识图谱推理技术的发展。
在这里插入图片描述

这篇关于【传知代码】知识图谱推理-论文复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016060

相关文章

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

公共筛选组件(二次封装antd)支持代码提示

如果项目是基于antd组件库为基础搭建,可使用此公共筛选组件 使用到的库 npm i antdnpm i lodash-esnpm i @types/lodash-es -D /components/CommonSearch index.tsx import React from 'react';import { Button, Card, Form } from 'antd'

17.用300行代码手写初体验Spring V1.0版本

1.1.课程目标 1、了解看源码最有效的方式,先猜测后验证,不要一开始就去调试代码。 2、浓缩就是精华,用 300行最简洁的代码 提炼Spring的基本设计思想。 3、掌握Spring框架的基本脉络。 1.2.内容定位 1、 具有1年以上的SpringMVC使用经验。 2、 希望深入了解Spring源码的人群,对 Spring有一个整体的宏观感受。 3、 全程手写实现SpringM

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

记录AS混淆代码模板

开启混淆得先在build.gradle文件中把 minifyEnabled false改成true,以及shrinkResources true//去除无用的resource文件 这些是写在proguard-rules.pro文件内的 指定代码的压缩级别 -optimizationpasses 5 包明不混合大小写 -dontusemixedcaseclassnames 不去忽略非公共

麻了!一觉醒来,代码全挂了。。

作为⼀名程序员,相信大家平时都有代码托管的需求。 相信有不少同学或者团队都习惯把自己的代码托管到GitHub平台上。 但是GitHub大家知道,经常在访问速度这方面并不是很快,有时候因为网络问题甚至根本连网站都打不开了,所以导致使用体验并不友好。 经常一觉醒来,居然发现我竟然看不到我自己上传的代码了。。 那在国内,除了GitHub,另外还有一个比较常用的Gitee平台也可以用于

众所周知,配置即代码≠基础设置即代码

​前段时间翻到几条留言,问: “配置即代码和基础设施即代码一样吗?” “配置即代码是什么?怎么都是基础设施即代码?” 我们都是知道,DevOp的快速发展,让服务器管理与配置的时间大大减少,配置即代码和基础设施即代码作为DevOps的重要实践,在其中起到了关键性作用。 不少人将二者看作是一件事,配置即大代码是关于管理特定的应用程序配置设置本身,而基础设施即代码更关注的是部署支持应用程序环境所需的

53、Flink Interval Join 代码示例

1、概述 interval Join 默认会根据 keyBy 的条件进行 Join 此时为 Inner Join; interval Join 算子的水位线会取两条流中水位线的最小值; interval Join 迟到数据的判定是以 interval Join 算子的水位线为基准; interval Join 可以分别输出两条流中迟到的数据-[sideOutputLeftLateData,