Linux内存管理(七十二):Linux PSI 原理更新(v5.15)

2024-05-29 21:04

本文主要是介绍Linux内存管理(七十二):Linux PSI 原理更新(v5.15),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源码基于:Linux 5.15

约定:

  • 芯片架构:ARM64
  • 内存架构:UMA
  • CONFIG_ARM64_VA_BITS:39
  • CONFIG_ARM64_PAGE_SHIFT:12
  • CONFIG_PGTABLE_LEVELS :3

0. 前言

本文是在之前《PSI 详解 v5.4》一文基础上,整理一下PSI 原理中的细节,包含 cgroup v2 关于PSI 的原理和使用。

参考:

PSI 详解 v5.4

PSI 指标

PSI 功能依赖 CONFIG_PSI,当该 config 没有使能,psi.c 是不会被编译到 image的。

1. PSI 中涉及的重要属性

本节主要梳理 PSI 中一些重要的变量、属性值,笔者习惯把重要的属性总结到最前文,阅读PSI 原理可以暂跳过此节。

1.1 psi_enable

kernel/sched/psi.c#ifdef CONFIG_PSI_DEFAULT_DISABLED
static bool psi_enable;
#else
static bool psi_enable = true;
#endif

静态全局变量 psi_enable 受限于 CONFIG_PSI_DEFAULT_DISABLED,默认该 config 不会使能,即 psi_enable 为 true。

另外,可以通过 cmdline 中属性 "psi=" 修改该值:

kernel/sched/psi.cstatic int __init setup_psi(char *str)
{return kstrtobool(str, &psi_enable) == 0;
}
__setup("psi=", setup_psi);

当 psi_enable 为false 时,PSI 全局控制变量 psi_disabled (static key) 会被置成 true:

kernel/sched/psi.cvoid __init psi_init(void)
{if (!psi_enable) {static_branch_enable(&psi_disabled);return;}...
}

1.2 psi_period

kernel/sched/psi.c/* Sampling frequency in nanoseconds */
static u64 psi_period __read_mostly;

1.3 psi_cgroups_enabled

kernel/sched/psi.cDEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);

该变量主要确认 cgroup 中是否启动了 PSI 功能,默认值为 true。

cgroup 模块通过在 cmdline 中设定 "cgroup_disable=" 属性来禁用功能,例如:

  • 设定 "cgroup_disable=cpuset" 来禁用 cpuset;
  • 设定 "cgroup_disable=pressure" 来禁用 PSI;

在 PSI 初始化 psi_init() 函数调用时,会确定 cgroup 模块是否禁用了 pressure,如果 cgroup 中禁用了 PSI,则 psi_cgroups_enabled 的值会被置为 false。

另外,与 Linux6.6 不同之处是,该变量在 Linux6.6 中定义时加上了 static:

static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);

1.4 psi_system 

正常情况下,PSI 中通过 struct psi_group 结构体管理 PSI 中所有状态、数据、work 等信息。

psi_system 是 struct psi_group 结构体变量,用以管理系统 PSI 状态、数据、work 等信息。

kernel/sched/psi.cstatic DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
struct psi_group psi_system = {.pcpu = &system_group_pcpu,
};

但,在 cgroup 中也可以实现PSI 局部管理,通过对 cpu.pressurememory.pressureio.pressure 等文件 write 操作注册 psi_trigger,实现对特定 cgroup 的资源瓶颈状态的监听和跟踪。

1.4 struct psi_group

include/linux/psi_types.hstruct psi_group {//avgs_work 数据同步锁struct mutex avgs_lock;/* Per-cpu task state & time tracking */struct psi_group_cpu __percpu *pcpu;/* Running pressure averages */u64 avg_total[NR_PSI_STATES - 1];//avgs_work的时间点u64 avg_last_update;u64 avg_next_update;//带有定时器的avgs_workstruct delayed_work avgs_work;/* Total stall times and sampled pressure averages */u64 total[NR_PSI_AGGREGATORS][NR_PSI_STATES - 1];unsigned long avg[NR_PSI_STATES - 1][3];//psimon 线程struct task_struct __rcu *poll_task;struct timer_list poll_timer;wait_queue_head_t poll_wait;atomic_t poll_wakeup;/* Protects data used by the monitor */struct mutex trigger_lock;//所有psi_trigger都存在链表中struct list_head triggers;//每个psi_states类型的psi_trigger 数量u32 nr_triggers[NR_PSI_STATES - 1];//统计poll_work 需要处理哪些psi_states类型的 triggeru32 poll_states;//记录poll_work 最小的周期u64 poll_min_period;/* Total stall times at the start of monitor activation */u64 polling_total[NR_PSI_STATES - 1];u64 polling_next_update;u64 polling_until;
};

2. PSI module 初始化

在module init 时调用 psi_proc_init() 进行 PSI 的初始化,创建了proc 虚拟文件目录 pressure,并在其下面创建了三个子文件:pressure/io、pressure/memory、pressure/cpu

与 Linux5.4 版本不同之处是,这些节点的创建是在  psi_enable 为true 条件下:

kernel/sched/psi.cstatic int __init psi_proc_init(void)
{if (psi_enable) {proc_mkdir("pressure", NULL);proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);}return 0;
}
module_init(psi_proc_init);

更多关于 psi_enable  变量信息可以查看上文第 1.1 节。 

3. PSI 初始化 psi_init()

start_kernel()---->sched_init()---->psi_init()

与 Linux5.4 不同之处是,这里开始多了 cgroup 的控制,主要是通过控制变量 psi_cgroups_enabled (static key),默认为true。

void __init psi_init(void)
{if (!psi_enable) {static_branch_enable(&psi_disabled);return;}if (!cgroup_psi_enabled())static_branch_disable(&psi_cgroups_enabled);psi_period = jiffies_to_nsecs(PSI_FREQ);group_init(&psi_system);
}

与 Linux6.6 不同之处是,当 psi_enable 为false 时,也会将 psi_cgroups_enabled 置为 false。

更多关于 psi_cgroups_enabledpsi_periodpsi_system 可以查看上文第 1.2 节。

3.1 group_init()

kernel/sched/psi.cstatic void group_init(struct psi_group *group)
{int cpu;for_each_possible_cpu(cpu)seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);//初始化avgs_work 的两个时间点group->avg_last_update = sched_clock();group->avg_next_update = group->avg_last_update + psi_period;//初始化带定时器的work,并指定处理函数为psi_avgs_work()INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);//初始化avgs_work 数据同步的 avgs_lockkmutex_init(&group->avgs_lock);/* Init trigger-related members */atomic_set(&group->poll_wakeup, 0);mutex_init(&group->trigger_lock);//初始化psi_trigger listINIT_LIST_HEAD(&group->triggers);//初始化每个psi_states类型的psi_trigger 数量memset(group->nr_triggers, 0, sizeof(group->nr_triggers));//初始化poll_work 需要处理哪些psi_states类型的 triggergroup->poll_states = 0;//初始化poll_work 的时间间隔,对于psi_system 这个group只记录最小值group->poll_min_period = U32_MAX;memset(group->polling_total, 0, sizeof(group->polling_total));//初始化下一次poll_work触发的时间group->polling_next_update = ULLONG_MAX;group->polling_until = 0;//初始化poll_work的等待队列init_waitqueue_head(&group->poll_wait);timer_setup(&group->poll_timer, poll_timer_fn, 0);rcu_assign_pointer(group->poll_task, NULL);
}

4. psi_trigger_create()

该函数用以创建 psi_trigger,系统中两个地方会触发:

  • 写 /proc/pressure/* 文件
  • 写 /sys/fs/cgroup/*.pressure 文件

创建好的 psi_trigger 都会被存在对应的 psi_group 中,或是系统的 psi_system,或是 cgroup 中的psi_group。

另外,在第一次创建 psi_trigger 的时候会创建 task "psimon"与 Linux5.4 不同之处是,这里用 kthread_create() 直接创建 task_struct,而不再是 kthread_worker。

kernel/sched/psi.cstruct psi_trigger *psi_trigger_create(struct psi_group *group,char *buf, size_t nbytes, enum psi_res res)
{struct psi_trigger *t;enum psi_states state;u32 threshold_us;u32 window_us;if (static_branch_likely(&psi_disabled))   //psi 是否enablereturn ERR_PTR(-EOPNOTSUPP);if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)  //解析是否为写 some 数据state = PSI_IO_SOME + res * 2;else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) //解析是否为写 full 数据state = PSI_IO_FULL + res * 2;elsereturn ERR_PTR(-EINVAL);   //其他数据都认为无效if (state >= PSI_NONIDLE)   //pis_states 不能超过PSI_NONIDLEreturn ERR_PTR(-EINVAL);if (window_us < WINDOW_MIN_US ||  //窗口时长设置在500ms 至 10swindow_us > WINDOW_MAX_US)return ERR_PTR(-EINVAL);/* Check threshold */if (threshold_us == 0 || threshold_us > window_us)  //检测阈值不能为0,也不能大于窗口时长return ERR_PTR(-EINVAL);t = kmalloc(sizeof(*t), GFP_KERNEL);  //创建一个psi_triggerif (!t)return ERR_PTR(-ENOMEM);t->group = group;   //记录psi_trigger的 groupt->state = state;   //记录psi_trigger的 psi_statest->threshold = threshold_us * NSEC_PER_USEC;  //记录psi_trigger的检测时间,us 单位t->win.size = window_us * NSEC_PER_USEC;      //记录psi_trigger的窗口时长,us 单位window_reset(&t->win, 0, 0, 0);t->event = 0;t->last_event_time = 0;init_waitqueue_head(&t->event_wait);mutex_lock(&group->trigger_lock);if (!rcu_access_pointer(group->poll_kworker)) { //psi 系统相当关键的地方,创建psimon 工作线程struct task_struct *task;task = kthread_create(psi_poll_worker, group, "psimon");if (IS_ERR(task)) {kfree(t);mutex_unlock(&group->trigger_lock);return ERR_CAST(task);}atomic_clear_bit(POLL_WAKEUP, &group->poll_wakeup);wake_up_process(task);rcu_assign_pointer(group->poll_task, task); //存放task到poll_task中}list_add(&t->node, &group->triggers);  //将新建的psi_trigger 存入group 中group->poll_min_period = min(group->poll_min_period,div_u64(t->win.size, UPDATES_PER_WINDOW)); //确认最新的poll 周期group->nr_triggers[t->state]++;    //计数当前psi 资源psi_trigger数量group->poll_states |= (1 << t->state);  //更新group 中资源状态mutex_unlock(&group->trigger_lock);return t;
}

 

4.1 psi_poll_worker()

该函数是 psimon 线程的执行函数,在 group->poll_wakup 被置为 POLL_WAKUP 或 线程停止时被唤醒,如果是 POLL_WAKEUP 唤醒则调用核心处理函数 psi_poll_work()

kernel/sched/psi.cstatic int psi_poll_worker(void *data)
{struct psi_group *group = (struct psi_group *)data;//设置psimon 的优先级sched_set_fifo_low(current);//等待唤醒,并执行psi_poll_work()while (true) {wait_event_interruptible(group->poll_wait,atomic_fetch_and_clear_bit(POLL_WAKEUP, &group->poll_wakeup) ||kthread_should_stop());if (kthread_should_stop())break;//psi poll 的核心处理函数psi_poll_work(group);}return 0;
}

这篇关于Linux内存管理(七十二):Linux PSI 原理更新(v5.15)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014637

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令