基于文本来推荐相似酒店

2024-05-29 20:20
文章标签 推荐 酒店 相似 本来

本文主要是介绍基于文本来推荐相似酒店,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于文本来推荐相似酒店

查看数据集基本信息

import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import linear_kernel
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import random
import cufflinks
import cufflinks
from plotly.offline import iplot
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df.head()
nameaddressdesc
0Hilton Garden Seattle Downtown1821 Boren Avenue, Seattle Washington 98101 USALocated on the southern tip of Lake Union, the...
1Sheraton Grand Seattle1400 6th Avenue, Seattle, Washington 98101 USALocated in the city's vibrant core, the Sherat...
2Crowne Plaza Seattle Downtown1113 6th Ave, Seattle, WA 98101Located in the heart of downtown Seattle, the ...
3Kimpton Hotel Monaco Seattle1101 4th Ave, Seattle, WA98101What?s near our hotel downtown Seattle locatio...
4The Westin Seattle1900 5th Avenue, Seattle, Washington 98101 USASituated amid incredible shopping and iconic a...
df.shape
(152, 3)
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."

查看酒店描述中主要介绍信息

vec=CountVectorizer().fit(df['desc'])
vec=CountVectorizer().fit(df['desc'])
bag_of_words=vec.transform(df['desc'])
sum_words=bag_of_words.sum(axis=0)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
[('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280)]
bag_of_words=vec.transform(df['desc'])
bag_of_words.shape
(152, 3200)
bag_of_words.toarray()
array([[0, 1, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],...,[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 1, 0, 0]], dtype=int64)
sum_words=bag_of_words.sum(axis=0)
sum_words
matrix([[ 1, 11, 11, ...,  2,  6,  2]], dtype=int64)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
[('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280)]

将以上信息整合成函数

def get_top_n_words(corpus,n=None):vec=CountVectorizer().fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]
common_words=get_top_n_words(df['desc'],20)
common_words
[('the', 1258),('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280),('is', 271),('at', 231),('from', 224),('for', 216),('your', 186),('or', 161),('center', 151),('are', 136),('downtown', 133),('on', 129)]
df1=pd.DataFrame(common_words,columns=['desc','count'])
common_words=get_top_n_words(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>    

在这里插入图片描述

chart_info1=df1.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info1.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>

在这里插入图片描述

def get_any1_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(1,1)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]
common_words=get_any1_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

在这里插入图片描述

def get_any2_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(2,2)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]common_words=get_any2_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

在这里插入图片描述

def get_any3_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(3,3)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]common_words=get_any3_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

在这里插入图片描述

描述的一些统计信息

df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
df['word_count']=df['desc'].apply(   lambda x:len(str(x).split(' '))    )
df.head()                                    
nameaddressdescword_count
0Hilton Garden Seattle Downtown1821 Boren Avenue, Seattle Washington 98101 USALocated on the southern tip of Lake Union, the...184
1Sheraton Grand Seattle1400 6th Avenue, Seattle, Washington 98101 USALocated in the city's vibrant core, the Sherat...152
2Crowne Plaza Seattle Downtown1113 6th Ave, Seattle, WA 98101Located in the heart of downtown Seattle, the ...147
3Kimpton Hotel Monaco Seattle1101 4th Ave, Seattle, WA98101What?s near our hotel downtown Seattle locatio...151
4The Westin Seattle1900 5th Avenue, Seattle, Washington 98101 USASituated amid incredible shopping and iconic a...151
df['word_count'].plot(kind='hist',bins=50)
<AxesSubplot:ylabel='Frequency'>

在这里插入图片描述

文本处理

sub_replace=re.compile('[^0-9a-z#-]')
from nltk.corpus import stopwords
stopwords=set(stopwords.words('english'))
def clean_txt(text):text.lower()text=sub_replace.sub(' ',text)''.join(    word   for word in text.split(' ')  if word not in stopwords               )return  text
df['desc_clean']=df['desc'].apply(clean_txt)
df['desc_clean'][0]
' ocated on the southern tip of  ake  nion  the  ilton  arden  nn  eattle  owntown hotel is perfectly located for business and leisure    he neighborhood is home to numerous major international companies including  mazon   oogle and the  ill    elinda  ates  oundation    wealth of eclectic restaurants and bars make this area of  eattle one of the most sought out by locals and visitors   ur proximity to  ake  nion allows visitors to take in some of the  acific  orthwest s majestic scenery and enjoy outdoor activities like kayaking and sailing  over 2 000 sq  ft  of versatile space and a complimentary business center   tate-of-the-art     technology and our helpful staff will guarantee your conference  cocktail reception or wedding is a success   efresh in the sparkling saltwater pool  or energize with the latest equipment in the 24-hour fitness center   astefully decorated and flooded with natural light  our guest rooms and suites offer everything you need to relax and stay productive   nwind in the bar  and enjoy  merican cuisine for breakfast  lunch and dinner in our restaurant   he 24-hour  avilion  antry  stocks a variety of snacks  drinks and sundries '

相似度计算

df.index
RangeIndex(start=0, stop=152, step=1)
df.head()
nameaddressdescword_countdesc_clean
0Hilton Garden Seattle Downtown1821 Boren Avenue, Seattle Washington 98101 USALocated on the southern tip of Lake Union, the...184ocated on the southern tip of ake nion the...
1Sheraton Grand Seattle1400 6th Avenue, Seattle, Washington 98101 USALocated in the city's vibrant core, the Sherat...152ocated in the city s vibrant core the herat...
2Crowne Plaza Seattle Downtown1113 6th Ave, Seattle, WA 98101Located in the heart of downtown Seattle, the ...147ocated in the heart of downtown eattle the ...
3Kimpton Hotel Monaco Seattle1101 4th Ave, Seattle, WA98101What?s near our hotel downtown Seattle locatio...151hat s near our hotel downtown eattle locatio...
4The Westin Seattle1900 5th Avenue, Seattle, Washington 98101 USASituated amid incredible shopping and iconic a...151ituated amid incredible shopping and iconic a...
df.set_index('name' ,inplace=True)
df.index[:5]
Index(['Hilton Garden Seattle Downtown', 'Sheraton Grand Seattle','Crowne Plaza Seattle Downtown', 'Kimpton Hotel Monaco Seattle ','The Westin Seattle'],dtype='object', name='name')
tf=TfidfVectorizer(analyzer='word',ngram_range=(1,3),stop_words='english')#将原始文档集合转换为TF-IDF特性的矩阵。
tf
TfidfVectorizer(ngram_range=(1, 3), stop_words='english')
tfidf_martix=tf.fit_transform(df['desc_clean'])
tfidf_martix.shape
(152, 27694)
cosine_similarity=linear_kernel(tfidf_martix,tfidf_martix)
cosine_similarity.shape
(152, 152)
cosine_similarity[0]
array([1.        , 0.01354605, 0.02855898, 0.00666729, 0.02915865,0.01258837, 0.0190937 , 0.0152567 , 0.00689703, 0.01852763,0.01241924, 0.00919602, 0.01189826, 0.01234794, 0.01200711,0.01596218, 0.00979221, 0.04374643, 0.01138524, 0.02334485,0.02358692, 0.00829121, 0.00620275, 0.01700472, 0.0191396 ,0.02340334, 0.03193292, 0.00678849, 0.02272962, 0.0176494 ,0.0125159 , 0.03702338, 0.01569165, 0.02001584, 0.03656467,0.03189017, 0.00644231, 0.01008181, 0.02428547, 0.03327365,0.01367507, 0.00827835, 0.01722986, 0.04135263, 0.03315194,0.01529834, 0.03568623, 0.01294482, 0.03480617, 0.01447235,0.02563783, 0.01650068, 0.03328324, 0.01562323, 0.02703264,0.01315504, 0.02248426, 0.02690816, 0.00565479, 0.02899467,0.02900863, 0.00971019, 0.0439659 , 0.03020971, 0.02166199,0.01487286, 0.03182626, 0.00729518, 0.01764764, 0.01193849,0.02405471, 0.01408249, 0.02632335, 0.02027866, 0.01978292,0.04879328, 0.00244737, 0.01937539, 0.01388813, 0.02996677,0.00756079, 0.01429659, 0.0050572 , 0.00630326, 0.01496956,0.04104425, 0.00911942, 0.00259554, 0.00645944, 0.01460694,0.00794788, 0.00592598, 0.0090397 , 0.00532289, 0.01445326,0.01156657, 0.0098189 , 0.02077998, 0.0116756 , 0.02593775,0.01000463, 0.00533785, 0.0026153 , 0.02261775, 0.00680343,0.01859473, 0.03802118, 0.02078981, 0.01196228, 0.03744293,0.05164375, 0.00760035, 0.02627101, 0.01579335, 0.01852171,0.06768183, 0.01619049, 0.03544484, 0.0126264 , 0.01613638,0.00662941, 0.01184946, 0.01843151, 0.0012407 , 0.00687414,0.00873796, 0.04397665, 0.06798914, 0.00794379, 0.01098165,0.01520306, 0.01257289, 0.02087956, 0.01718063, 0.0292332 ,0.00489742, 0.03096065, 0.01163736, 0.01382631, 0.01386944,0.01888652, 0.02391748, 0.02814364, 0.01467017, 0.00332169,0.0023627 , 0.02348599, 0.00762246, 0.00390889, 0.01277579,0.00247891, 0.00854051])

求酒店的推荐

indices=pd.Series(df.index)
indices[:5]
0    Hilton Garden Seattle Downtown
1            Sheraton Grand Seattle
2     Crowne Plaza Seattle Downtown
3     Kimpton Hotel Monaco Seattle 
4                The Westin Seattle
Name: name, dtype: object
def recommendation(name,cosine_similarity):recommend_hotels=[]idx=indices[indices==name].index[0]score_series=pd.Series(cosine_similarity[idx]).sort_values(ascending=False)top_10_indexes=list(score_series[1:11].index)for i in top_10_indexes:recommend_hotels.append(list(df.index)[i])return recommend_hotels                                
recommendation('Hilton Garden Seattle Downtown',cosine_similarity)
['Staybridge Suites Seattle Downtown - Lake Union','Silver Cloud Inn - Seattle Lake Union','Residence Inn by Marriott Seattle Downtown/Lake Union','MarQueen Hotel','The Charter Hotel Seattle, Curio Collection by Hilton','Embassy Suites by Hilton Seattle Tacoma International Airport','SpringHill Suites Seattle\xa0Downtown','Courtyard by Marriott Seattle Downtown/Pioneer Square','The Loyal Inn','EVEN Hotel Seattle - South Lake Union']

这篇关于基于文本来推荐相似酒店的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014550

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

防近视护眼台灯什么牌子好?五款防近视效果好的护眼台灯推荐

在家里,灯具是属于离不开的家具,每个大大小小的地方都需要的照亮,所以一盏好灯是必不可少的,每个发挥着作用。而护眼台灯就起了一个保护眼睛,预防近视的作用。可以保护我们在学习,阅读的时候提供一个合适的光线环境,保护我们的眼睛。防近视护眼台灯什么牌子好?那我们怎么选择一个优秀的护眼台灯也是很重要,才能起到最大的护眼效果。下面五款防近视效果好的护眼台灯推荐: 一:六个推荐防近视效果好的护眼台灯的

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

开放式耳机好用?平价开放式耳机推荐?四款开放式的蓝牙耳机推荐

开放式耳机好用吗?有平价些的开放式耳机推荐吗?那这两个问题的回答当然是肯定的。 首先开放式耳机好不好用取决于对耳机的需求,因为开放式耳机其实是比较适用于需要注意周围环境、需要‌长时间佩戴舒适以及需要频繁与人交流的场景中,在这些场景下使用开放式耳机的话就会比较有优势。就例如跑步骑行健身等运动的时候,能够兼得佩戴舒适度的同时,增加一定的安全性;还有在办公学习的时候,会很适合长时间佩戴,能够方便和

CCF推荐C类会议和期刊总结(计算机网络领域)

CCF推荐C类会议和期刊总结(计算机网络领域) 在计算机网络领域,中国计算机学会(CCF)推荐的C类会议和期刊为研究者提供了广泛的学术交流平台。以下是对所有C类会议和期刊的总结,包括全称、出版社、dblp文献网址以及所属领域。 目录 CCF推荐C类会议和期刊总结(计算机网络领域) C类期刊 1. Ad Hoc Networks 2. CC 3. TNSM 4. IET Com

推荐练习键盘盲打的网站

对于初学者来说,以下是一些推荐的在线打字练习网站: 打字侠:这是一个专业的在线打字练习平台,提供科学合理的课程设置和个性化学习计划,适合各个水平的用户。它还提供实时反馈和数据分析,帮助你提升打字速度和准确度。 dazidazi.com:这个网站提供了基础的打字练习,适合初学者从零开始学习打字。 Type.fun打字星球:提供了丰富的盲打课程和科学的打字课程设计,还有诗词歌赋、经典名著等多样

Java Web应用程序的推荐目录结构

以前没有用过maven管理过项目的依赖,最后使用上了maven,发现通过不能方式建立出来的web应用程序目录结构基本都不一样,既然每次都要到网上搜索如何建立maven管理的Web应用程序,不如自己找百度谷歌一下。 找了半天 ,感觉比较好的maven管理的web应用程序目录结构是这个: ├── pom.xml└── src├── main│ ├── java│ │ └── myg

Cortex-A7:ARM官方推荐的嵌套中断实现机制

0 参考资料 ARM Cortex-A(armV7)编程手册V4.0.pdf ARM体系结构与编程第2版 1 前言 Cortex-M系列内核MCU中断硬件原生支持嵌套中断,开发者不需要为了实现嵌套中断而进行额外的工作。但在Cortex-A7中,硬件原生是不支持嵌套中断的,这从Cortex-A7中断向量表中仅为外部中断设置了一个中断向量可以看出。本文介绍ARM官方推荐使用的嵌套中断实现机

计算机毕业设计选题推荐-域名管理系统-域名商城-域名竞拍系统-Java/Python项目实战

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python项目 安卓项目 微信小程序项目 文章目录 一、前言二、开发环境三、系统界面展示四、代码参考五、论文参考六、系统视频结语