统计学习方法笔记-感知机

2024-05-29 17:32

本文主要是介绍统计学习方法笔记-感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    感知机是二类分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值,属于判别模型。分为原始形式和对偶形式。是神经网络与支持向量机的基础。
    由输入空间到输出空间的如下函数:f(x) = sign(w·x + b)  称为感知机.
    其中,w和b为感知机模型参数, 叫做权值或权值向量, 叫做偏置,
sign是符号函数,即
                                            
感知机模型的假设空间是定义在特征空间中的所有线性分类模型或线性分类器,即函数集合
{f | f(x) = w·x + b}
感知机有如下几何解释:
    线性方程    w·x + b = 0     对应特征空间中的一个超平面S,其中w是超平面的法向量,b是超平面的截距。这个超平面将特征空间分成两部分.位于两部分的点分别被分为正、负两类(注意:正负类只是代表两种不同的类别,而不是正的表示正确分类的类、负的表示错误分类的类)。因此,超平面S称为分离超平面。

感知机学习策略
    假设训练数据是线性可分的,感知机学习的目标是求得一个能将训练数据集的正负实例完全正确分开的分离超平面。为了找出这样的超平面,定义损失函数并将损失函数极小化
    损失函数的一个自然选择是误分类点的总数。但是这样的损失函数不是参数w,b连续可导的函数,不易优化。损失函数的另一个选择是误分类点到超平面S的总距离,这是感知机所采用的。输入空间中的任一点x0到超平面S的距离:
                                    1/||w|| · |w·x0 + b|
这里,||w||是w的L2范数。
证明如下:


对于误分类点来说-yi(w·xi + b) > 0,因此误分类点xi到超平面S的距离是:-1/||w|| · yi (w·xi + b)
因为||w||是固定的,所以可以不考虑1/||w||,那么就得到了感知机的损失函数
其中M为误分类点的集合,这个损失函数就是感知机的经验风险函数。

感知机学习算法
感知机学习算法的原始形式
感知机学习算法是对以下最优化问题的算法 

其中M为误分类点的集合。

感知机学习算法是误分类驱动的,具体采取随机梯度下降法,首先选取一个超平面w0,b0,然后用梯度下降法不断地极小化目标函数。极小化过程不是一次使M中所有误分类点的梯度下降,而是一次随机选取一

这篇关于统计学习方法笔记-感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014176

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss