本文主要是介绍【python】OpenCV—Tracking(10.2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- BackgroundSubtractor
- createBackgroundSubtractorMOG2
- createBackgroundSubtractorKNN
BackgroundSubtractor
Opencv 有三种背景分割器
-
K-Nearest:KNN
-
Mixture of Gaussian(MOG2)
-
Geometric Multigid(GMG)
借助 BackgroundSubtractor 类,可检测阴影,用阈值排除阴影,从而关注实际特征
createBackgroundSubtractorMOG2
OpenCV图像处理- 视频背景消除与前景ROI提取
API:
cv2.createBackgroundSubtractorMOG2(
int history = 500,
double varThreshold = 16,
bool detectShadows = true
)
参数解释如下:
- history表示过往帧数,500帧,选择history = 1就变成两帧差
- varThreshold表示像素与模型之间的马氏距离,值越大,只有那些最新的像素会被归到前景,值越小前景对光照越敏感。
- detectShadows 是否保留阴影检测,请选择False这样速度快点。
import cv2
import os
# bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)
bs = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
os.makedirs("frame1", exist_ok=True)
os.makedirs("frame2", exist_ok=True)
os.makedirs("frame3", exist_ok=True)camera = cv2.VideoCapture('car.mkv')
index = 0
while True:ret, frame = camera.read()index += 1frame_h, frame_w, _ = frame.shapefgmask = bs.apply(frame)th = cv2.threshold(fgmask.copy(), 244, 255, cv2.THRESH_BINARY)[1]dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)),iterations=2)contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for c in contours:# if cv2.contourArea(c) > frame_w*0.075 * frame_h*0.075:if cv2.contourArea(c) > 1000:(x, y, w, h) = cv2.boundingRect(c)cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255), 5)cv2.imshow("mog", fgmask)cv2.imwrite("./frame1/{}.jpg".format(index), fgmask)cv2.imshow("thresh", th)cv2.imwrite("./frame2/{}.jpg".format(index), th)cv2.imshow("detection", frame)cv2.imwrite("./frame3/{}.jpg".format(index), frame)if cv2.waitKey(30) & 0xff == ord("q"):breakcamera.release()
cv2.destroyAllWindows()
做 gif 的时候只设置了播放一次,重复播放需要刷新
createBackgroundSubtractorKNN
import cv2
import numpy as np
bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)
camera = cv2.VideoCapture('car.mkv')
index = 0
while True:ret, frame = camera.read()index += 1frame_h, frame_w, _ = frame.shapefgmask = bs.apply(frame)th = cv2.threshold(fgmask.copy(), 244, 255, cv2.THRESH_BINARY)[1]dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)),iterations=2)contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for c in contours:# if cv2.contourArea(c) > frame_w*0.075 * frame_h*0.075:if cv2.contourArea(c) > 1000:(x, y, w, h) = cv2.boundingRect(c)cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255), 5)cv2.imshow("mog", fgmask)cv2.imwrite("./frame1/{}.jpg".format(index), fgmask)cv2.imshow("thresh", th)cv2.imwrite("./frame2/{}.jpg".format(index), th)cv2.imshow("detection", frame)cv2.imwrite("./frame3/{}.jpg".format(index), frame)if cv2.waitKey(30) & 0xff == ord("q"):breakcamera.release()
cv2.destroyAllWindows()
这篇关于【python】OpenCV—Tracking(10.2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!