形态学操作+实例分析(第六天)

2024-05-28 20:18

本文主要是介绍形态学操作+实例分析(第六天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

形态学概念介绍

形态学现在学完基本的几个了,但我还是不知道什么是形态学!原理其实就是和“卷积”在图像处理中的应用一样,就是一个“内核”遍历图像之后进行处理,内核的不同使得处理得到的图像效果也是不同的。下面介绍几种形态学滤波原理你就懂了:

注->RGB:0-255,0代表黑色,255代表白色

腐蚀:腐蚀的顾名思义就是一个东西变黑变坏变烂了,那么简单的理解就是把大于0的像素都都变得接近0就行了啊!

         那对应的图像处理:

膨胀:一个人膨胀了的样子怎样的?变得越来越耀眼、越来越明亮!那么对应的像素就是像素<255的就越来越接近255啊。

        那对应的图像处理:

开运算:从名字记忆是图像打开,既然是打开那就是最后的结果是膨胀-------------------->先腐蚀后膨胀

闭运算:和开运算相对,从名字记忆是图像关闭,既然是打开那就是最后的结果是腐蚀----->先膨胀后腐蚀

形态学梯度:梯度就是一个阶梯的长度,对应于图像那就是像素的差值,膨胀—原图、原图—腐蚀、膨胀—腐蚀、X/Y等方向的

顶帽:不解释了---->原图—开运算

黑帽:------------>原图—闭运算

---实例分析---

注意点:形态学滤波一般运用在二值化的图像上,对于那些彩色的图像运用不明显(用过之后很难看),看了很多书本的介绍都是随便找个例子,这是在课程中看到的,感觉按照下面的步骤学习形态学真的很简单而且实用!

例一:腐蚀的作用 

原图如下,去除图片上的小白点。

用内核大小3X3进行的图片:小的白点已经没有了,但是稍微大点的杂点还是没去除!

 这是实用15X15的内核进行的图片:图片的白点完全去除了。

这是不是完成了我们的要求了呢?仔细的看会发现,我们想要的大白色区域变小了,这是什么原因呢?

从我们上面的原理分析可以得知:腐蚀会把目标区域给变小的,请看下面的图片->>>红色区域是内核,

一号区域->黑色

二号区域->白色

三号区域->黑色

二号区域->黑色

五号区域->黑色

所以图片缩小的区域就是内核的大小,每个边都会缩小!

 在想一下,如果我们用膨胀处理经过腐蚀的图片会怎么样?由上面的分析可以很快得到结论,就是恢复我们目标区域的原始尺寸

    看下面的效果图:

 

 代码比较简单,就是几行API,但是如何运用,为什么这么运用,这才是关键:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(15,15));
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

例二:提取行和列

    要求提取其中的行线段-->>

 经过处理的线段图片:

 

这里没给其他的特殊照片,看代码直接改一下就可以了。

注意点: getStructuringElement()获得内核的一些参数->核大小、核形状、核锚点等。其中控制核的大小可以滤波不同的噪点:

我要滤去下面的三个大噪点,保留上面的大白色区域,其实滤波的核定义成红色的大小就可以了,不一定是正方形,矩形就可以了。

int main(int argc,char*=*argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(input_image.cols/30,1));//这个input_image.cols/30,是定义核的长度是图片长度的三十分之一,如果直                                                           接给定一个数200也可以,但是你不知道200在图像上是多大啊。
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

 例三:简单的提取字母

       目的是提取图片中的字母

 
灰度化:

 阈值化:

 形态学滤波:

取反之后:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     cvtColor(input_image,input_image,CV_RGB2GRAY);9     imshow("Sourse1 image", input_image);
10     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);
11     threshold(input_image,input_image,15,255,THRESH_BINARY);
12     imshow("Sourse2 image", input_image);
13     Mat output_image;
14     Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3));
15      erode(input_image,output_image,kernel);
16     dilate(output_image, output_image,kernel);
17     imshow("Destinate image",output_image);
18     bitwise_not(output_image,output_image);
19     imshow("Destinate2 image", output_image);
20     Mat my_kernel = (Mat_<uchar>(3, 3) << 0, -1, 0, 5, -1, 0, -1, 0);
21     filter2D(output_image,output_image,output_image.depth(),my_kernel);//加强显示
22     imshow("Destinate3 image", output_image);
23     waitKey(0);
24     return 0;
25 }

 例四:稍微困难的提取字母

                这个图像对我来说有点麻烦的,形态学滤波不行的,而且形态学操作之后留下很多噪点。。。。。

形态学操作之后:

轮廓检测去除噪点:

霍夫变换去除粗实线:

这个图的小噪点用上面的步骤可以去除,这个就没再继续了

上代码:

 1 Mat input_image = imread("2.jpg");2     if (input_image.data==NULL) {3         return -1; cout << "can't open image.../";4     }5     imshow("Sourse image", input_image);6     cvtColor(input_image,input_image,CV_RGB2GRAY);7     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);8     threshold(input_image,input_image,0,255,THRESH_BINARY|THRESH_OTSU);9     //-----------------------去除细实线------------------------//
10     Mat output_image;
11     Mat kernel1 = getStructuringElement(MORPH_RECT,Size(3,3));
12     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
13     bitwise_not(input_image, input_image);
14     output_image = input_image.clone();
15     imshow("DeleteThick image", input_image);
16     //----------------------去除形态学不能去除的噪点----------------------//
17     vector<vector<Point> > contours;
18     vector<Vec4i> hierarchy;
19     findContours(output_image, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
20     Mat contours_image = Mat::zeros(input_image.size(), input_image.type());
21     for (size_t i = 0; i < contours.size(); i++)
22     {
23         double Area = contourArea(contours[i]);
24         if (Area > 50) continue;
25         drawContours(contours_image, contours, static_cast<int>(i),Scalar(255,255,255),1);
26     }
27     input_image = input_image - contours_image;
28     morphologyEx(input_image, input_image, MORPH_OPEN, kernel1);
29     imshow("contours image", input_image);
30     //------------------去除粗实线--------------------//
31     vector<Vec4i> lines;
32     HoughLinesP(input_image,lines,1,CV_PI/180,100,0,200); 
33     Mat line_image = Mat::zeros(input_image.size(), input_image.type());
34     for (size_t i = 0; i < lines.size(); i++)
35     {
36         line(line_image, Point(lines[i][0], lines[i][1]),
37             Point(lines[i][2], lines[i][3]), Scalar(255, 255, 255), 1, 8);
38     }
39     bitwise_not(input_image, input_image);
40     input_image = line_image + input_image;
41     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
42     imshow("Last image", input_image);

这篇关于形态学操作+实例分析(第六天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011584

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断