形态学操作+实例分析(第六天)

2024-05-28 20:18

本文主要是介绍形态学操作+实例分析(第六天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

形态学概念介绍

形态学现在学完基本的几个了,但我还是不知道什么是形态学!原理其实就是和“卷积”在图像处理中的应用一样,就是一个“内核”遍历图像之后进行处理,内核的不同使得处理得到的图像效果也是不同的。下面介绍几种形态学滤波原理你就懂了:

注->RGB:0-255,0代表黑色,255代表白色

腐蚀:腐蚀的顾名思义就是一个东西变黑变坏变烂了,那么简单的理解就是把大于0的像素都都变得接近0就行了啊!

         那对应的图像处理:

膨胀:一个人膨胀了的样子怎样的?变得越来越耀眼、越来越明亮!那么对应的像素就是像素<255的就越来越接近255啊。

        那对应的图像处理:

开运算:从名字记忆是图像打开,既然是打开那就是最后的结果是膨胀-------------------->先腐蚀后膨胀

闭运算:和开运算相对,从名字记忆是图像关闭,既然是打开那就是最后的结果是腐蚀----->先膨胀后腐蚀

形态学梯度:梯度就是一个阶梯的长度,对应于图像那就是像素的差值,膨胀—原图、原图—腐蚀、膨胀—腐蚀、X/Y等方向的

顶帽:不解释了---->原图—开运算

黑帽:------------>原图—闭运算

---实例分析---

注意点:形态学滤波一般运用在二值化的图像上,对于那些彩色的图像运用不明显(用过之后很难看),看了很多书本的介绍都是随便找个例子,这是在课程中看到的,感觉按照下面的步骤学习形态学真的很简单而且实用!

例一:腐蚀的作用 

原图如下,去除图片上的小白点。

用内核大小3X3进行的图片:小的白点已经没有了,但是稍微大点的杂点还是没去除!

 这是实用15X15的内核进行的图片:图片的白点完全去除了。

这是不是完成了我们的要求了呢?仔细的看会发现,我们想要的大白色区域变小了,这是什么原因呢?

从我们上面的原理分析可以得知:腐蚀会把目标区域给变小的,请看下面的图片->>>红色区域是内核,

一号区域->黑色

二号区域->白色

三号区域->黑色

二号区域->黑色

五号区域->黑色

所以图片缩小的区域就是内核的大小,每个边都会缩小!

 在想一下,如果我们用膨胀处理经过腐蚀的图片会怎么样?由上面的分析可以很快得到结论,就是恢复我们目标区域的原始尺寸

    看下面的效果图:

 

 代码比较简单,就是几行API,但是如何运用,为什么这么运用,这才是关键:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(15,15));
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

例二:提取行和列

    要求提取其中的行线段-->>

 经过处理的线段图片:

 

这里没给其他的特殊照片,看代码直接改一下就可以了。

注意点: getStructuringElement()获得内核的一些参数->核大小、核形状、核锚点等。其中控制核的大小可以滤波不同的噪点:

我要滤去下面的三个大噪点,保留上面的大白色区域,其实滤波的核定义成红色的大小就可以了,不一定是正方形,矩形就可以了。

int main(int argc,char*=*argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(input_image.cols/30,1));//这个input_image.cols/30,是定义核的长度是图片长度的三十分之一,如果直                                                           接给定一个数200也可以,但是你不知道200在图像上是多大啊。
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

 例三:简单的提取字母

       目的是提取图片中的字母

 
灰度化:

 阈值化:

 形态学滤波:

取反之后:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     cvtColor(input_image,input_image,CV_RGB2GRAY);9     imshow("Sourse1 image", input_image);
10     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);
11     threshold(input_image,input_image,15,255,THRESH_BINARY);
12     imshow("Sourse2 image", input_image);
13     Mat output_image;
14     Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3));
15      erode(input_image,output_image,kernel);
16     dilate(output_image, output_image,kernel);
17     imshow("Destinate image",output_image);
18     bitwise_not(output_image,output_image);
19     imshow("Destinate2 image", output_image);
20     Mat my_kernel = (Mat_<uchar>(3, 3) << 0, -1, 0, 5, -1, 0, -1, 0);
21     filter2D(output_image,output_image,output_image.depth(),my_kernel);//加强显示
22     imshow("Destinate3 image", output_image);
23     waitKey(0);
24     return 0;
25 }

 例四:稍微困难的提取字母

                这个图像对我来说有点麻烦的,形态学滤波不行的,而且形态学操作之后留下很多噪点。。。。。

形态学操作之后:

轮廓检测去除噪点:

霍夫变换去除粗实线:

这个图的小噪点用上面的步骤可以去除,这个就没再继续了

上代码:

 1 Mat input_image = imread("2.jpg");2     if (input_image.data==NULL) {3         return -1; cout << "can't open image.../";4     }5     imshow("Sourse image", input_image);6     cvtColor(input_image,input_image,CV_RGB2GRAY);7     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);8     threshold(input_image,input_image,0,255,THRESH_BINARY|THRESH_OTSU);9     //-----------------------去除细实线------------------------//
10     Mat output_image;
11     Mat kernel1 = getStructuringElement(MORPH_RECT,Size(3,3));
12     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
13     bitwise_not(input_image, input_image);
14     output_image = input_image.clone();
15     imshow("DeleteThick image", input_image);
16     //----------------------去除形态学不能去除的噪点----------------------//
17     vector<vector<Point> > contours;
18     vector<Vec4i> hierarchy;
19     findContours(output_image, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
20     Mat contours_image = Mat::zeros(input_image.size(), input_image.type());
21     for (size_t i = 0; i < contours.size(); i++)
22     {
23         double Area = contourArea(contours[i]);
24         if (Area > 50) continue;
25         drawContours(contours_image, contours, static_cast<int>(i),Scalar(255,255,255),1);
26     }
27     input_image = input_image - contours_image;
28     morphologyEx(input_image, input_image, MORPH_OPEN, kernel1);
29     imshow("contours image", input_image);
30     //------------------去除粗实线--------------------//
31     vector<Vec4i> lines;
32     HoughLinesP(input_image,lines,1,CV_PI/180,100,0,200); 
33     Mat line_image = Mat::zeros(input_image.size(), input_image.type());
34     for (size_t i = 0; i < lines.size(); i++)
35     {
36         line(line_image, Point(lines[i][0], lines[i][1]),
37             Point(lines[i][2], lines[i][3]), Scalar(255, 255, 255), 1, 8);
38     }
39     bitwise_not(input_image, input_image);
40     input_image = line_image + input_image;
41     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
42     imshow("Last image", input_image);

这篇关于形态学操作+实例分析(第六天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011584

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

java Stream操作转换方法

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、... 目录流创建1、list 转 map2、filter()过滤3、foreach遍历4、groupingB

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维