形态学操作+实例分析(第六天)

2024-05-28 20:18

本文主要是介绍形态学操作+实例分析(第六天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

形态学概念介绍

形态学现在学完基本的几个了,但我还是不知道什么是形态学!原理其实就是和“卷积”在图像处理中的应用一样,就是一个“内核”遍历图像之后进行处理,内核的不同使得处理得到的图像效果也是不同的。下面介绍几种形态学滤波原理你就懂了:

注->RGB:0-255,0代表黑色,255代表白色

腐蚀:腐蚀的顾名思义就是一个东西变黑变坏变烂了,那么简单的理解就是把大于0的像素都都变得接近0就行了啊!

         那对应的图像处理:

膨胀:一个人膨胀了的样子怎样的?变得越来越耀眼、越来越明亮!那么对应的像素就是像素<255的就越来越接近255啊。

        那对应的图像处理:

开运算:从名字记忆是图像打开,既然是打开那就是最后的结果是膨胀-------------------->先腐蚀后膨胀

闭运算:和开运算相对,从名字记忆是图像关闭,既然是打开那就是最后的结果是腐蚀----->先膨胀后腐蚀

形态学梯度:梯度就是一个阶梯的长度,对应于图像那就是像素的差值,膨胀—原图、原图—腐蚀、膨胀—腐蚀、X/Y等方向的

顶帽:不解释了---->原图—开运算

黑帽:------------>原图—闭运算

---实例分析---

注意点:形态学滤波一般运用在二值化的图像上,对于那些彩色的图像运用不明显(用过之后很难看),看了很多书本的介绍都是随便找个例子,这是在课程中看到的,感觉按照下面的步骤学习形态学真的很简单而且实用!

例一:腐蚀的作用 

原图如下,去除图片上的小白点。

用内核大小3X3进行的图片:小的白点已经没有了,但是稍微大点的杂点还是没去除!

 这是实用15X15的内核进行的图片:图片的白点完全去除了。

这是不是完成了我们的要求了呢?仔细的看会发现,我们想要的大白色区域变小了,这是什么原因呢?

从我们上面的原理分析可以得知:腐蚀会把目标区域给变小的,请看下面的图片->>>红色区域是内核,

一号区域->黑色

二号区域->白色

三号区域->黑色

二号区域->黑色

五号区域->黑色

所以图片缩小的区域就是内核的大小,每个边都会缩小!

 在想一下,如果我们用膨胀处理经过腐蚀的图片会怎么样?由上面的分析可以很快得到结论,就是恢复我们目标区域的原始尺寸

    看下面的效果图:

 

 代码比较简单,就是几行API,但是如何运用,为什么这么运用,这才是关键:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(15,15));
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

例二:提取行和列

    要求提取其中的行线段-->>

 经过处理的线段图片:

 

这里没给其他的特殊照片,看代码直接改一下就可以了。

注意点: getStructuringElement()获得内核的一些参数->核大小、核形状、核锚点等。其中控制核的大小可以滤波不同的噪点:

我要滤去下面的三个大噪点,保留上面的大白色区域,其实滤波的核定义成红色的大小就可以了,不一定是正方形,矩形就可以了。

int main(int argc,char*=*argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(input_image.cols/30,1));//这个input_image.cols/30,是定义核的长度是图片长度的三十分之一,如果直                                                           接给定一个数200也可以,但是你不知道200在图像上是多大啊。
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

 例三:简单的提取字母

       目的是提取图片中的字母

 
灰度化:

 阈值化:

 形态学滤波:

取反之后:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     cvtColor(input_image,input_image,CV_RGB2GRAY);9     imshow("Sourse1 image", input_image);
10     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);
11     threshold(input_image,input_image,15,255,THRESH_BINARY);
12     imshow("Sourse2 image", input_image);
13     Mat output_image;
14     Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3));
15      erode(input_image,output_image,kernel);
16     dilate(output_image, output_image,kernel);
17     imshow("Destinate image",output_image);
18     bitwise_not(output_image,output_image);
19     imshow("Destinate2 image", output_image);
20     Mat my_kernel = (Mat_<uchar>(3, 3) << 0, -1, 0, 5, -1, 0, -1, 0);
21     filter2D(output_image,output_image,output_image.depth(),my_kernel);//加强显示
22     imshow("Destinate3 image", output_image);
23     waitKey(0);
24     return 0;
25 }

 例四:稍微困难的提取字母

                这个图像对我来说有点麻烦的,形态学滤波不行的,而且形态学操作之后留下很多噪点。。。。。

形态学操作之后:

轮廓检测去除噪点:

霍夫变换去除粗实线:

这个图的小噪点用上面的步骤可以去除,这个就没再继续了

上代码:

 1 Mat input_image = imread("2.jpg");2     if (input_image.data==NULL) {3         return -1; cout << "can't open image.../";4     }5     imshow("Sourse image", input_image);6     cvtColor(input_image,input_image,CV_RGB2GRAY);7     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);8     threshold(input_image,input_image,0,255,THRESH_BINARY|THRESH_OTSU);9     //-----------------------去除细实线------------------------//
10     Mat output_image;
11     Mat kernel1 = getStructuringElement(MORPH_RECT,Size(3,3));
12     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
13     bitwise_not(input_image, input_image);
14     output_image = input_image.clone();
15     imshow("DeleteThick image", input_image);
16     //----------------------去除形态学不能去除的噪点----------------------//
17     vector<vector<Point> > contours;
18     vector<Vec4i> hierarchy;
19     findContours(output_image, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
20     Mat contours_image = Mat::zeros(input_image.size(), input_image.type());
21     for (size_t i = 0; i < contours.size(); i++)
22     {
23         double Area = contourArea(contours[i]);
24         if (Area > 50) continue;
25         drawContours(contours_image, contours, static_cast<int>(i),Scalar(255,255,255),1);
26     }
27     input_image = input_image - contours_image;
28     morphologyEx(input_image, input_image, MORPH_OPEN, kernel1);
29     imshow("contours image", input_image);
30     //------------------去除粗实线--------------------//
31     vector<Vec4i> lines;
32     HoughLinesP(input_image,lines,1,CV_PI/180,100,0,200); 
33     Mat line_image = Mat::zeros(input_image.size(), input_image.type());
34     for (size_t i = 0; i < lines.size(); i++)
35     {
36         line(line_image, Point(lines[i][0], lines[i][1]),
37             Point(lines[i][2], lines[i][3]), Scalar(255, 255, 255), 1, 8);
38     }
39     bitwise_not(input_image, input_image);
40     input_image = line_image + input_image;
41     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
42     imshow("Last image", input_image);

这篇关于形态学操作+实例分析(第六天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011584

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

MySQL游标和触发器的操作流程

《MySQL游标和触发器的操作流程》本文介绍了MySQL中的游标和触发器的使用方法,游标可以对查询结果集进行逐行处理,而触发器则可以在数据表发生更改时自动执行预定义的操作,感兴趣的朋友跟随小编一起看看... 目录游标游标的操作流程1. 定义游标2.打开游标3.利用游标检索数据4.关闭游标例题触发器触发器的基

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

在C#中分离饼图的某个区域的操作指南

《在C#中分离饼图的某个区域的操作指南》在处理Excel饼图时,我们可能需要将饼图的各个部分分离出来,以使它们更加醒目,Spire.XLS提供了Series.DataFormat.Percent属性,... 目录引言如何设置饼图各分片之间分离宽度的代码示例:从整个饼图中分离单个分片的代码示例:引言在处理

Python列表的创建与删除的操作指南

《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点