【NumPy】掌握NumPy的histogram函数:数据直方图的生成与应用详解

2024-05-28 16:04

本文主要是介绍【NumPy】掌握NumPy的histogram函数:数据直方图的生成与应用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式+人工智能领域,具备多年的嵌入式硬件产品研发管理经验。

📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导、简历面试辅导、技术架构设计优化、开发外包等服务,有需要可加文末联系方式联系。

💬 博主粉丝群介绍:① 群内高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

掌握NumPy的histogram函数:数据直方图的生成与应用详解

      • 1. 引言
      • 2. NumPy库概述
      • 3. numpy.histogram函数详解
        • 3.1 函数介绍
        • 3.2 参数解析
        • 3.3 返回值
      • 4. 示例代码与应用
        • 4.1 基础使用
        • 4.2 自定义区间边界
        • 4.3 密度直方图
      • 5. 高级应用与注意事项
      • 6. 总结

在这里插入图片描述

1. 引言

在Python的数据分析和可视化领域,准确理解数据分布是至关重要的一步。numpy.histogram函数作为NumPy库中的一个核心工具,为我们提供了强大的数据离散化和频率分布分析能力。本文将深入探讨numpy.histogram的使用,从NumPy库的概述、函数的详尽解析到实战示例,最后总结其在数据分析中的重要作用,帮助读者掌握这一数据分析的利器。

2. NumPy库概述

NumPy,全称为Numerical Python,是Python语言的扩展库,专为高效进行大规模数值计算和数组操作设计。它提供了一个高性能的多维数组对象——ndarray,以及一系列针对这些数组的数学运算函数,使得对数组的操作既高效又直观。NumPy是Python科学计算生态系统的基石,为Pandas、Matplotlib等库提供了基础支持。

3. numpy.histogram函数详解

3.1 函数介绍

numpy.histogram(a, bins=10, range=None, density=False, weights=None, cumulative=False, bottom=None)用于计算一维数组a中元素的频率分布。它将数据划分为若干个连续的区间(bin),然后统计每个区间内数据点的数量,从而生成直方图。

3.2 参数解析
  • a:输入数组,需要分析的数值数据。
  • bins(可选):分组的数量或分组边界数组。默认为10,表示将数据分为10个等宽的区间。
  • range(可选):指定数据的范围,格式为(min, max),默认为数据的最小值和最大值。
  • density(可选):如果为True,则返回频率密度而不是计数,即直方图面积之和为1。
  • weights(可选):与a形状相同的数组,用于对每个样本的权重分配。
  • cumulative(可选):如果为True,计算累积分布。
3.3 返回值

返回两个数组:第一个是每个区间的边界,第二个是每个区间内的样本数量。

4. 示例代码与应用

4.1 基础使用
import numpy as npdata = np.random.randn(1000)
hist, bin_edges = np.histogram(data, bins=30)
print("Histogram values:", hist)
print("Bin edges:", bin_edges)
4.2 自定义区间边界
custom_bins = np.linspace(-3, 3, 21)
hist_custom, _ = np.histogram(data, bins=custom_bins)
print("Histogram with custom bins:", hist_custom)
4.3 密度直方图
hist_density, bin_edges = np.histogram(data, bins=30, density=True)
print("Density histogram:", hist_density)

5. 高级应用与注意事项

  • 重叠直方图:通过调整alpha参数在matplotlib中绘制,可以展示多个数据集的重叠分布。
  • 直方图平滑:使用numpy.histogram配合matplotlib的stepfilledbar函数,可以实现直方图的平滑显示。
  • 权重分配:在处理分类数据或需要按权重分析时,合理利用weights参数可以提供更深入的见解。

6. 总结

numpy.histogram是探索数据分布的有力工具,它不仅能够快速生成直方图,还能通过调整参数满足不同的分析需求,如自定义区间、密度估计、累积分布等。在数据探索的初步阶段,利用numpy.histogram可以帮助我们快速理解数据的集中趋势、离散程度和异常值情况,为后续的深入分析奠定基础。掌握其使用方法,将显著提升数据分析的效率与质量,是每位数据科学家和分析师不可或缺的技能之一。

这篇关于【NumPy】掌握NumPy的histogram函数:数据直方图的生成与应用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011034

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为