Python函数式编程入门窥探

2024-05-28 05:52

本文主要是介绍Python函数式编程入门窥探,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 函数式编程
    • 把函数当作对象
    • 高阶函数
      • map的替代品
      • reduce的替代品
      • filter的替代品
    • 匿名函数
    • 可以向函数一样可调用的对象
    • 自定义的调用类型
    • 函数内省
    • 传递给函数的参数:从定位参数到仅限关键字参数
    • 获取关于函数参数的信息--inspect模块
      • 获取函数签名的signature方法
      • inspect.Signature对象的bind方法
    • Python3 的一个特性——函数注解
    • 支持函数式编程的包(operator,functools)
      • 另一种冻结参数的方法functools.partial
  • 小结

函数式编程

把函数当作对象

函数式编程是把函数作为一等公民,把一些算数运算符当作函数使用,python不是一门纯粹的函数式编程语言,但是在一些库的加持下(operator,functools)使得他的函数式编程功能同样强大

在python中我们会把函数当作对象使用

def foo(x):"""x * x * x"""return x * x * xprint(foo(3))
print(foo.__doc__) # python 中的一种特殊方法用于查看函数的注解

高阶函数

在其他语言的函数式编程中经常使用map,reduce在python中也可以使用,不过python对着两种方法都有更便捷的实现方式

map的替代品

map方法可以应用python的列表表达式得到更简便更可读的实现

# map 和 列表表达式
def square(x):return x * x
square_one_to_ten = map(square,range(1,11))print(list(square_one_to_ten))square_one_to_ten = [square(i) for i in range(1,11)]
print(square_one_to_ten)
# 输出
c:/Users/Administrator/GithubRepo/study_recording/fluent_python/ch05/test_case.py
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

reduce的替代品

reduce方法在python3之后就被移除了内置方法,我们可以在functools中找到这个函数,我们可以使用python中的sum()方法作为替代品,而且sum方法的效率更加高效

# reduce 和 sum
# 计算累计求和
from functools import reduce
from operator import  add
acumulation = reduce(add , range(0,100))# 0 - 99 sum
new_trick = sum(range(0,100))
print(acumulation == new_trick) # True

sum 和 reduce 的特点是应用某一种操作到指定序列上,累计之前的结果,把一个系列值归约成一个值
除此之外 python 中的all()和any()方法也是一种归约函数,前者是只要序列中都不为0返回True后者是只要有真值就返回True

filter的替代品

过滤一些序列中的元素我们同样可以用列表表达式来实现

# filter and list generator
format1 = filter(lambda x : x % 2 == 0,range(11))
format2 = [i for i in range(11) if i % 2 == 0]print(f'user filter : {list(format1)}\nuse list generator : {format2}')
# 输出
# user filter : [0, 2, 4, 6, 8, 10]
# use list generator : [0, 2, 4, 6, 8, 10]

同样的结果我们可以使用列表表达式来减少lambda函数的使用

匿名函数

python中的匿名函数无法对传入的变量进行赋值,它只能是纯表达式的形式
除了作为参数传递给一些高阶函数,平凡的lambda函数容易写出,难的lambda表达式就难以阅读

可以向函数一样可调用的对象

python中判断一个对象是否可以被调用,可以调用其内置的callable()方法

# callable
from operator import add
print([callable(i) for i in [add, str , 1]]) # [True, True, False]

自定义的调用类型

在python中一切皆为对象,不仅函数可以表现得像对象,甚至对象也可以表现得像函数,我们只需要去实现python对象中的__call__这个实例方法

# callable object
import randomclass RandomNumberSelector():def __init__(self) -> None:self._item = list(range(100))random.shuffle(self._item)def __call__(self):return self._item[random.randint(0,100)]obj = RandomNumberSelector()
print(obj())
print(obj())

函数内省

除了__call__和__doc__函数还有其他很多的属性,使用dir方法可以了解一个函数还有那些属性

print([i for i in dir(square)])
['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribute__', '__globals__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__kwdefaults__', '__le__', '__lt__', '__module__', '__name__', 
'__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']

我们也可以了解对象有哪些属性

print([i for i in dir(RandomNumberSelector)])
['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__']

同时我们也可以查看二者不共存的属性

print(sorted(set(dir(square)) - set(dir(RandomNumberSelector))))
['__annotations__', '__closure__', '__code__', '__defaults__', '__get__', '__globals__', '__kwdefaults__', '__name__', '__qualname__']

以上是类的属性中没有而函数属性有的属性

我们主要介绍与把函数视为对象的一些方法比如__dict__属性,是一种为函数提供注解的属性,Django框架中对函数赋予了这种注解的属性

传递给函数的参数:从定位参数到仅限关键字参数

python提供了及其灵活的参数处理方式,python3又提供了一种仅限关键字参数,同时密切相关的有*和**符号,可以展开可迭代对象这个过程就是拆包的过程
*符号,会把没有明确指定名称关键字的参数捕获作为列表传入,**符号会把没有明确指定名称的关键字参数捕获作为字典输入函数

# Example
def tag(name,*content,cls=None,**attrs):"""生成一个或者多个HTML标签"""if cls is not None:attrs['class'] = clsif attrs :attrs_str = ' '.join('%s="%s"' % (attr,value)for attr , valuein sorted(attrs.items()))else :attrs_str = ''if content:return '\n'.join('<%s %s>%s</%s>' % (name , attrs_str , c ,name) for c in content)else :return '<%s%s />' % (name , attrs_str)print(tag("br"))
print(tag("p","hello","world!"))
print(tag("h1","hello world!"))
print(tag('div',"FOo",cls="frame",id="dow")) # cls只能作为关键字参数传入
print(tag('div',"FOo",id="dow"))

输出 :

<br />
<p >hello</p>
<p >world!</p>
<h1 >hello world!</h1>
<div class="frame"id="dow">FOo</div>
<div id="dow">FOo</div>

获取关于函数参数的信息–inspect模块

函数对象具有__default__属性,其值是一个元组,保存着定位参数和关键字参数的默认值,仅限关键字参数的默认值存放在__kwdefaults__属性中,参数的名称存放在__code__属性中,其是一个code对象的引用,本身也有很多属性

# Example
def clip(text,max_len=80):"""在max_len前面或者后面的第一个空格处截断文本"""end = Noneif len(text) > max_len:space_before = text.rfind(' ',0,max_len) # rfind函数的第二个参数beg规定从哪里开始搜索,如果不设置则默认从尾部开始搜索if space_before >= 0:end = space_beforeelse :space_after = text.rfind(' ',max_len)if space_after >= 0 :end = space_afterif end is None:end = len(text)return text[:end].rstrip() # 去掉右边的空格部分

获取函数签名的signature方法

from inspect import signature
sig = signature(clip)print(sig) # 输出 : (text, max_len=80)for name, param in sig.parameters.items():print(f'name:{name} ,param:{param}')# name:text ,param:text# name:max_len ,param:max_len=80

signature方法返回了一个inspect.Signature对象,它有一个paramerters属性,对应了一个有序映射,是字典。把参数的名字和inspect.Parameter对象对应起来,每个Parameter都有自己的属性

inspect.Signature对象的bind方法

sig = signature(tag)
my_tag = {"name":'p',"content":["Hello","World!"],"cls":'news',"attrs":{"id":1}}
bound_args = sig.bind(**my_tag)
print(bound_args)
# <BoundArguments (name='p', cls='news', attrs={'content': ['Hello', 'World!'], 'attrs': {'id': 1}})>
for name,value in bound_args.arguments.items():print(name , value)
# name p
# cls news
# attrs {'content': ['Hello', 'World!'], 'attrs': {'id': 1}}

Signature对象有一个bind方法可以把任意个参数绑定到签名中的形参上,这里通过输入可以发现,当输入的形参含有序列信息的时候,这个方法会把序列信息给**attrs参数捕获,存入一个字典

Python3 的一个特性——函数注解

python3可以在函数声明和返回值附加元数据

def func(foo:str) -> int:return int(foo)

这种注解不会对函数做任何处理,只会存储在__annotations__属性中(一个字典)

for k , v in func.__annotations__.items():print(f'{k} = {v}')
# foo = <class 'str'>
# return = <class 'int'>

支持函数式编程的包(operator,functools)

函数式编程中经常需要把算术运算符当作函数使用,operator包提供了完整的算术运算符的函数

使用operator中的mul,add,配合reduce可以实现累乘或者累加

例如使用mul函数来实现阶乘

from operator import mul
from functools import reduce
def fact(n):return reduce(mul,range(1,n+1))

operator库中除了有算数运算符还有一些能从序列中读取对象属性的方法,分别是itemgetter和attrgetter顾名思义分别是读取对象索引和读取对象参数,本质上是一些简单lambda表达式的更有可读性的实现

operator中余下的模块中还有一个methodcaller方法,适用于对一个对象使用指定参数的方法

s = 'upper these characters'
from operator import methodcaller
uppercase = methodcaller('upper')
s = uppercase(s)
print(s) # UPPER THESE CHARACTERSreplace_backspace = methodcaller('replace',' ','___')
s = replace_backspace(s)
print(s) # UPPER___THESE___CHARACTERS

最后一个print可以发现methodcaller还有冻结部分参数的功能

另一种冻结参数的方法functools.partial

冻结参数的本质其实就是将一个函数的部分参数应用于一个对象

from functools import partial
from operator import mulmultiply_3 = partial(mul,3)
print(multiply_3(21)) # 63

partial的第一个参数是要可执行的一个方法,后面紧跟的是关键字参数或者不定参数

小结

Python本身不是一门函数式编程语言,但是它参考了一些函数式编程语言很好的地方,除了可以写出更可读的代码外。还能用它来实现一些特定功能,本身也提供了强大的注解系统和函数和对象之间的灵活调用

这篇关于Python函数式编程入门窥探的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009717

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联