本文主要是介绍JMX_EXPORTER配置详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
-
启动方式
自启动
java -javaagent:./jmx_prometheus_javaagent-0.13.0.jar=8080:config.yaml -jar yourJar.jar
随组件启动
随组件启动时启动,在组件运行命令中添加以下代码:
-javaagent:./jmx_prometheus_javaagent-0.13.0.jar=8080:config.yaml
举例,要配置监控hadoop,可在hadoop配置中的hadoop-env.sh中添加以下配置:
if [[ $HADOOP_NAMENODE_OPTS != *jmx_prometheus_javaagent* ]];thenexport HADOOP_NAMENODE_OPTS="-javaagent:/opt/apps/exporters/jmx_prometheus_javaagent-0.15.1-SNAPSHOT.jar=30001:/opt/apps/exporters/hadoop/namenode.yaml $HADOOP_NAMENODE_OPTS"
fi
可访问<ip>:30001/metrics访问prometheus格式的指标数据
-
jmx_exporter解析配置
官方提供的文档:
例如以上配置中/opt/apps/exporters/hadoop/namenode.yaml举例,参数意义见以下注释:
# jmx_exporter启动的延迟时间;启动前不会返回任何数据
startDelaySeconds: 0
# 这个是被监控组件的jmx的ip和端口号,如果不配置,默认设置是本地jvm
# 注:如果是随组件一起启动,此处建议不配置(除非自己变更过jmx端口)
hostPort: 127.0.0.1:1234
# jmx远程连接认证的用户名和密码
username: someuser
password: somepwd
# 完整的jmx的url,如果已配置以上三项,此处不用配置
jmxUrl: service:jmx:rmi:///jndi/rmi://127.0.0.1:1234/jmxrmi
# 是否使用ssl加密通讯,若要使用,需要额外在被监控组件启动命令中添加以下配置:
# -Djavax.net.ssl.keyStore=/home/user/.keystore -Djavax.net.ssl.keyStorePassword=changeit -Djavax.net.ssl.trustStore=/home/user/.truststore -Djavax.net.ssl.trustStorePassword=changeit
ssl: false
# 是否自动将指标名转换成小写,默认不转换
lowercaseOutputName: false
# 是否自动将指标的标签名转换成小写,默认不转换
lowercaseOutputLabelNames: false
# 白名单列表,只会查询白名单内的Bean。其它的不会被查询,也不会被rules中的规则匹配;如果为空,将匹配所有Bean;支持正则
whitelistObjectNames: ["org.apache.cassandra.metrics:*"]
# 黑名单列表,在黑名单内的Bean不会被查询,也不会被rules中的规则匹配;支持正则
blacklistObjectNames: ["org.apache.cassandra.metrics:type=ColumnFamily,*"]
# 将Bean转换为prometheus指标的规则,支持配置多个;每个规则可生成一个或多个指标
rules:# 匹配正则表达式,其底层实现是基于java的Pattern和Matcher,全匹配模式- pattern: 'org.apache.cassandra.metrics<type=(\w+), name=(\w+)><>Value: (\d+)'# 匹配到的bean,转换为哪个prometheus指标name: cassandra_$1_$2# 将attribute转换为蛇形模式,即JavaAgent转换为java_agent,不配置此项时默认不转换attrNameSnakeCase: false# 指标的值value: $3# 指标值的放大缩小倍数,一般用于单位转换;prometheus指标一般使用基本单位,如果放大可以写1000,缩小写0.0001,根据单位转换实际情况填写valueFactor: 0.001# 指标的标签labels: "tag1": $2"tag2": "some tag value"# 指标的描述说明help: "Cassandra metric $1 $2"# 指标的数据类型,可以是Counter,GAUGE,Histogram,Summary,不写是默认为Untypedtype: GAUGE
发现目前网络上的文章都是从官网翻译而来,实际并未自已实践尝试过。作者对于每个配置项都进行了测试,通过研读源码,结合配置样例讲解以加深大家理解。
-
配置样例
-
简单解析
jmx的bean样例:
配置的解析规则:
生成的指标:
-
同时解析出多个指标
jmx的bean样例:
配置的解析规则:
生成的指标:
-
复杂对象解析
jmx的bean样例:
{beans:[{"name" : "java.lang:type=MemoryPool,name=PS Old Gen","modelerType" : "sun.management.MemoryPoolImpl","Valid" : true,"CollectionUsage" : {"committed" : 932184064,"init" : 1431830528,"max" : 21474836480,"used" : 22340736}]
}
配置的解析规则:
对于多层属性的数据结构,可在第二个<>中依次分级添加属性,注意每个<>中的内容都顺序都不能错,且每个属性之间的逗号(,)后面必须要有空格;在最后的冒号(:)后面也必须要有空格
- pattern: 'java.lang<type=MemoryPool, name=PS Old Gen><CollectionUsage>(\w+): (.*)'name: Hadoop_DataNode_metricsvalue: $2help: "DataNodeStatus mem pool metric"type: COUNTERlabels:"version": "$2""atrrname": "$1"
生成的指标:
# HELP Hadoop_DataNode_metrics_total DataNodeStatus mem pool metric
# TYPE Hadoop_DataNode_metrics_total counter
Hadoop_DataNode_metrics{atrrname="committed",version="932184064",} 9.32184064E8
Hadoop_DataNode_metrics{atrrname="init",version="1431830528",} 1.431830528E9
Hadoop_DataNode_metrics{atrrname="max",version="21474836480",} 2.147483648E10
Hadoop_DataNode_metrics{atrrname="used",version="22340736",} 2.2340736E7
-
表格数据对象解析
jmx的bean样例:
{"beans" : [ {"name" : "java.lang:type=Runtime","modelerType" : "sun.management.RuntimeImpl","BootClassPath" : "/usr/java/jdk1.8.0_162/jre/lib/resources.jar:/usr/java/jdk1.8.0_162/jre/lib/rt.jar:/usr/java/jdk1.8.0_162/jre/lib/sunrsasign.jar:/usr/java/jdk1.8.0_162/jre/lib/jsse.jar:/usr/java/jdk1.8.0_162/jre/lib/jce.jar:/usr/java/jdk1.8.0_162/jre/lib/charsets.jar:/usr/java/jdk1.8.0_162/jre/lib/jfr.jar:/usr/java/jdk1.8.0_162/jre/classes","LibraryPath" : "/opt/apps/hadoop_everdc/lib/native","Uptime" : 24540387,"VmName" : "Java HotSpot(TM) 64-Bit Server VM","VmVendor" : "Oracle Corporation","VmVersion" : "25.162-b12","BootClassPathSupported" : true,"InputArguments" : [ "-Dproc_datanode", "-Xmx1000m", "-Djava.net.preferIPv4Stack=true", "-Dhadoop.log.dir=/data/hadoop/log//hdfs", "-Dhadoop.log.file=hadoop.log", "-Dhadoop.home.dir=/opt/apps/hadoop_everdc", "-Dhadoop.id.str=hdfs", "-Dhadoop.root.logger=INFO,console", "-Djava.library.path=/opt/apps/hadoop_everdc/lib/native", "-Dhadoop.policy.file=hadoop-policy.xml", "-Djava.net.preferIPv4Stack=true", "-Djava.net.preferIPv4Stack=true", "-Djava.net.preferIPv4Stack=true", "-Dhadoop.log.dir=/data/hadoop/log//hdfs", "-Dhadoop.log.file=hadoop-hdfs-datanode-ambari58.log", "-Dhadoop.home.dir=/opt/apps/hadoop_everdc", "-Dhadoop.id.str=hdfs", "-Dhadoop.root.logger=INFO,RFA", "-Djava.library.path=/opt/apps/hadoop_everdc/lib/native", "-Dhadoop.policy.file=hadoop-policy.xml", "-Djava.net.preferIPv4Stack=true", "-Dhadoop.security.logger=ERROR,RFAS", "-Xmx30720m", "-Dhadoop.security.logger=ERROR,RFAS", "-Xmx30720m", "-javaagent:/opt/apps/exporters/jmx_prometheus_javaagent-0.15.1-SNAPSHOT.jar=30003:/opt/apps/exporters/hadoop/datanode.yaml", "-Dhadoop.security.logger=ERROR,RFAS", "-Xmx30720m", "-Dhadoop.security.logger=INFO,RFAS" ],"ManagementSpecVersion" : "1.2","SpecName" : "Java Virtual Machine Specification","SpecVendor" : "Oracle Corporation","SpecVersion" : "1.8","SystemProperties" : [ {"key" : "awt.toolkit","value" : "sun.awt.X11.XToolkit"}, {"key" : "file.encoding.pkg","value" : "sun.io"}, {"key" : "java.specification.version","value" : "1.8"}, {"key" : "sun.jnu.encoding","value" : "UTF-8"}],"StartTime" : 1625627195308,"Name" : "41805@ambari58"}]
}
配置的解析规则:
- pattern: 'java.lang<type=Runtime, key=awt.toolkit><>SystemProperties: (.*)'name: runtime_info_system_properties_toolkitvalue: 1labels:"clz": "$1"
生成的指标:
# HELP runtime_info_system_properties_toolkit java.util.Map<java.lang.String, java.lang.String> (java.lang<type=Runtime, key=awt.toolkit><>SystemProperties)
# TYPE runtime_info_system_properties_toolkit untyped
runtime_info_system_properties_toolkit{clz="sun.awt.X11.XToolkit",} 1.0
-
复杂对象加表格数据对象解析
jmx的bean样例:
{beans:[{"name": "Hadoop:service=DataNode,name=DataNodeInfo","modelerType": "org.apache.hadoop.hdfs.server.datanode.DataNode","Version": "2.6.0-cdh5.14.2","XceiverCount": 26,"DatanodeNetworkCounts": [{"key": "/10.193.40.4","value": [{"key": "networkErrors","value": 27}]},{"key": "/10.193.40.3","value": [{"key": "networkErrors","value": 2545}]},{"key": "/10.193.40.5","value": [{"key": "networkErrors","value": 33}]}],"RpcPort": "50020","HttpPort": null,"NamenodeAddresses": "{\"yh-shhd-cdh05\":\"BP-1654582017-10.193.40.10-1585051030504\",\"yh-shhd-cdh02\":\"BP-1654582017-10.193.40.10-1585051030504\"}","VolumeInfo": "{\"/mnt/disk3/dfs/dn/current\":{\"usedSpace\":2123832329532,\"freeSpace\":5403410074903,\"reservedSpace\":10737418240,\"reservedSpaceForRBW\":263679405},\"/mnt/disk2/dfs/dn/current\":{\"usedSpace\":2141850634176,\"freeSpace\":5385258770496,\"reservedSpace\":10737418240,\"reservedSpaceForRBW\":396679168},\"/mnt/disk0/dfs/dn/current\":{\"usedSpace\":2185856311266,\"freeSpace\":5341126906910,\"reservedSpace\":10737418240,\"reservedSpaceForRBW\":522865664},\"/mnt/disk1/dfs/dn/current\":{\"usedSpace\":2132307337216,\"freeSpace\":5394803232768,\"reservedSpace\":10737418240,\"reservedSpaceForRBW\":395513856}}","ClusterId": "cluster7","DiskBalancerStatus": ""}]
}
配置的解析规则:
注意当复杂数据模型在多层之间存在相同的属性名称时(例如本例中的key出现在了两层),在写匹配规则时,第二个key要在后面加_,第三个key要在后面加两个_(__),依次类推,第n层要加n-1个下划线。(这个是比较坑的,官方文档影儿都没有)
另外,几乎jmx相关的多层复杂数据模型在暴露jmx指标数据时,都是类似以上案例中的key,value的形式;
rules:- pattern: 'Hadoop<name=DataNodeInfo, service=DataNode, key=(.*), key_=networkErrors><>DatanodeNetworkCounts: (.*)'name: hadoop_datanode_network_errorsvalue: $2help: "DataNode networkErrors every host"type: COUNTERlabels: "host": "$1"
以上案例中,如果DatanodeNetworkCounts不在bean属性的第一层,而在第3层,前两层为
a:{b:DatanodeNetworkCounts:....},则只需要更改pattern为:
Hadoop<name=DataNodeInfo, service=DataNode, key=(.*), key_=networkErrors><a,b>DatanodeNetworkCounts: (.*)
生成的指标:
# HELP hadoop_datanode_network_errors DataNode networkErrors every host
# TYPE hadoop_datanode_network_errors gauge
hadoop_datanode_network_errors{host="/10.193.40.4",} 27.0
hadoop_datanode_network_errors{host="/10.193.40.3",} 2545.0
hadoop_datanode_network_errors{host="/10.193.40.5",} 33.0
-
其它问题
官方jmx_exporter对于一个jvm最多只能有一个jmx_exporter运行进行监控,所以当一台机器安装了jdk后,有多个组件都使用这个jdk时,无法使用多个jmx_exporter监控所有组件;对于此问题,作者对官方exporter进行了改造,使其可以支持一个jvm使用多个jmx_exporter,可参见:https://gitee.com/keamspring/jmx_exporter/tree/multiplue_component_assist
这篇关于JMX_EXPORTER配置详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!