牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】

2024-05-27 22:20

本文主要是介绍牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

在这里插入图片描述
题目链接:
https://www.nowcoder.com/practice/4af96fa010c44638a7e112abf65f7237

思路

贪心+二分

    所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理

Java代码

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/public int LIS (int[] a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.length;if (n <= 1) return n;int[] dp = new int[n + 1];int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n ; i++) {if (dp[idx] < a[i]) {idx++;dp[idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
}

Go代码

package main/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
func LIS(a []int) int {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/n := len(a)if n <= 1 {return n}dp := make([]int, n+1)idx := 1dp[idx] = a[0]//利用贪心+二分查找进行更新for i := 1; i < n; i++ {if dp[idx] < a[i] {idx++dp[idx] = a[i]} else {l := 1r := idxpos := 0for l <= r {mid := (l + r) >> 1if dp[mid] < a[i] {pos = midl = mid + 1} else {r = mid - 1}}dp[pos+1] = a[i]}}return idx
}

PHP代码

<?php/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
function LIS( $a )
{//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/$n = count($a);if($n<=1){return $n;}$dp =[0];$idx = 1;$dp[$idx] = $a[0];// 利用贪心 + 二分查找进行更新for($i=1;$i<$n;$i++){if($dp[$idx] <$a[$i]){$idx++;$dp[$idx] = $a[$i];}else{$l=1;$r =$idx;$pos=0;while ($l<=$r){$mid = ($l+$r) >>1;if($dp[$mid] <$a[$i]){$pos = $mid;$l=$mid+1;}else{$r = $mid-1;}}$dp[$pos+1] = $a[$i];}}return $idx;
}

C++代码

class Solution {public:/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型vector 给定的数组* @return int整型*/int LIS(vector<int>& a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.size();if (n <= 1) {return n;}vector<int> dp(n + 1, 0);int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n; i++) {if (dp[idx] < a[i]) {dp[++idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
};

这篇关于牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008755

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que