牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】

2024-05-27 22:20

本文主要是介绍牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

在这里插入图片描述
题目链接:
https://www.nowcoder.com/practice/4af96fa010c44638a7e112abf65f7237

思路

贪心+二分

    所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理

Java代码

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/public int LIS (int[] a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.length;if (n <= 1) return n;int[] dp = new int[n + 1];int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n ; i++) {if (dp[idx] < a[i]) {idx++;dp[idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
}

Go代码

package main/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
func LIS(a []int) int {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/n := len(a)if n <= 1 {return n}dp := make([]int, n+1)idx := 1dp[idx] = a[0]//利用贪心+二分查找进行更新for i := 1; i < n; i++ {if dp[idx] < a[i] {idx++dp[idx] = a[i]} else {l := 1r := idxpos := 0for l <= r {mid := (l + r) >> 1if dp[mid] < a[i] {pos = midl = mid + 1} else {r = mid - 1}}dp[pos+1] = a[i]}}return idx
}

PHP代码

<?php/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
function LIS( $a )
{//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/$n = count($a);if($n<=1){return $n;}$dp =[0];$idx = 1;$dp[$idx] = $a[0];// 利用贪心 + 二分查找进行更新for($i=1;$i<$n;$i++){if($dp[$idx] <$a[$i]){$idx++;$dp[$idx] = $a[$i];}else{$l=1;$r =$idx;$pos=0;while ($l<=$r){$mid = ($l+$r) >>1;if($dp[$mid] <$a[$i]){$pos = $mid;$l=$mid+1;}else{$r = $mid-1;}}$dp[$pos+1] = $a[$i];}}return $idx;
}

C++代码

class Solution {public:/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型vector 给定的数组* @return int整型*/int LIS(vector<int>& a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.size();if (n <= 1) {return n;}vector<int> dp(n + 1, 0);int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n; i++) {if (dp[idx] < a[i]) {dp[++idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
};

这篇关于牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008755

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("