Matlab数字图像处理学习记录【2】——亮度变换与空间滤波

本文主要是介绍Matlab数字图像处理学习记录【2】——亮度变换与空间滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

亮度变换与空间滤波

  • 一.背景知识
  • 二.亮度变换函数
    • 2.1函数imadjust
    • 2.2对数和对比度拉伸变换
    • 2.3整合
  • 三.直方图处理与绘图函数
    • 3.1生成并绘制直方图
    • 3.2直方图均衡化
    • 3.2直方图匹配
  • 四.空间滤波
    • 4.1线性空间滤波
    • 4.2非线性空间滤波
  • 五.IPT的标准空间滤波器
    • 5.1线性空间滤波器
    • 5.2非线性空间滤波器

一.背景知识

空间域技术则是直接对图像的像素进行操作。有表达式:
g ( x , y ) = T [ f ( x , y ) ] g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)] 其中f是输入,g是输出。
还有点(x,y)的临近点定义为.是中心位于(x,y)的正方形或长方形。(这就有意思了,边界可能不填充)
在这里插入图片描述

二.亮度变换函数

在灰度图里,亮度就是灰度,而彩色图里,则是每个通道的颜色分量。

2.1函数imadjust

该函数语法:g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

  • 简单点来讲,就是将in的值映射out的值,就可以理解为数学上的那种定义域变化。这俩矩阵的范围都是0~1与图像类型无关,会自适应。
  • gamma决定了映射方式是否为线性,可省略,默认值为1。
    在这里插入图片描述
  • high_out < low_out则亮度还会反转。

2.2对数和对比度拉伸变换

对数缩放是指:如果高频太多,则在图像查看的时候,低频段的东西是不占优势的,高频占了主导,低频就会抑制。所以得想出一种办法对其缩放。后面会介绍这个函数。
而基于此想法,衍生出一种对比度拉伸变换函数。就高频一个高值,低频一个低值,然后中频就由对数级数缩放或者直接阶跃,阶跃情况下,图像则会变成二值图像。
这种方法的函数表达式为:
s = T ( r ) = 1 1 + ( m / r ) E s=T(r)=\frac{1}{1+(m/r)^E} s=T(r)=1+(m/r)E1 E则是缩放函数的斜率
matlab可以如下表示:
g = 1./(1 + (m./(double(f) + eps)).^E)
简单点,可以直接使用
g = im2uint8(mat2gray (log(1 + double (f))));

2.3整合

我们可以通过自己编写一个函数intrans来实现将前面所学的功能负片、对数、gamma、对比度拉伸变换全部整合:

function g = intrans(f, varargin)
error(nargchk(2, 4, nargin));
classin = class(f);
if strcmp(class(f), 'double') & max(f(:)) > 1 & ~strcmp(varargin{1}, 'log')f = mat2gray(f);
elsef = im2double(f);
end
method = varargin{1};
switch methodcase 'neg'g = imcomplement(f);case 'log'if length(varargin) == 1c = 1;elseif length(varargin) == 2c = varargin{2};elseif length(varargin) == 3c = varargin{2};classin = varargin{3};elseerror('Incorrect number of inputs for the log option')endg = c*(log(1 + double(f)));case 'gamma'if length(varargin) < 2error('Not enough inputs for the gamma option')endgam = varargin{2};g = imadjust(f, [ ], [ ], gam);case 'stretch'if length(varargin) == 1m = mean2(f);E = 4.0;elseif length(varargin) == 3m = varargin{2};E = varargin{3};elseerror('Incorrect number of inputs for the stretch option')endg = 1./(1+(m./(f + eps)).^E);otherwiseerror('Unknown method')
end
g = changeclass(classin, g);

然后是changeclass这个函数需要自己写:

function image = changeclass(class, varargin)
switch class
case 'uint8'image = im2uint8(varargin{:});
case 'uint16'image = im2uint16(varargin{:});
case 'double'image = im2double(varargin{:});
otherwiseerror('Unsupported IPT data class.');
end

这样我们就可以调用这个整合的函数了:

f = imread('gray.jpg');
g = intrans(f, 'stretch', mean2(im2double(f)), 0.9);
subplot(1,2,1);
imshow(f);
subplot(1,2,2);
imshow(g);

三.直方图处理与绘图函数

按目前来说,直方图在增强,压缩,分割,描述方面扮演着基础性的角色,其他应用后续会介绍,目前是学如何绘制。

3.1生成并绘制直方图

简单来说,就是按照亮度级进行离散化的划分。在[0,G]里有L个亮度级。
具体函数为h = imhist(f, b)
b是要分成多少级,若为空,则默认为G+1
而通过numel(f)可获取f有多少元素,即h = imhist(f, b)/numel(f)即可对直方图归一化。
直接调用imhist(f, b);可以获得直方图,但是这个图很不好看,所以常用其他的绘图方式:
bar(horz, v, width)

  • v是我们要绘制的直方图的点组成的行向量
  • horz则是一个与v维度相同的向量,用于标记水平标度值,若为空,则默认为length(v)。、
  • width默认的是直方图的柱的宽度

axis([horzmin horzmax vertmin vertmax])
则是水平、垂直坐标轴的最小最大值
set(gca, 'xtick\ytick', [])
则可以通过行向量来调整坐标轴的刻度
text(xloc, yloc, 'text str', 'fontsize', 'size')
可以为坐标轴添加文字
title('str')
可以添加标题
有类似的,杆状图:stem(horz, v, 'color_style_marker', 'fill')fill为是否填充坐标点
还有plot(horz, v, 'color_style_marker')
其中color_style_marker则是与Python中的参数一致:
在这里插入图片描述
最终样式则如下:
在这里插入图片描述

3.2直方图均衡化

假设灰度级归一化至范围[0,1]的连续量,则prr表示某给定图像中的灰度级的概率密度函数(PDF),则对输入灰度级做如下变换,得到输出的灰度级s:
s = T ( r ) = ∫ 0 r p r ( w ) d w s=T(r)=\int_{0}^{r} p_r(w)\, dw s=T(r)=0rpr(w)dw 其中式中w是积分的哑分量,可以看出输出的灰度级的概率密度函数是均匀的:
p s ( S ) = { 1 , 0 ≤ s ≤ 1 0 , 其 他 p_s(S)= \begin{cases} 1,\qquad\ 0\leq s\leq 1 \\ 0, \qquad\ 其他 \end{cases} ps(S)={1, 0s10, 
反正总的来说,直方图均衡化后,会加局部不够明显的地方,比如画面过亮,则会变暗,过暗则会变,它具有高对比度。
一般来说我们使用函数g = histeq(f, nlev)
其中nlev默认为64.但是为了有最好的效果,需将灰度级设置为最大的可能数量,比如256.
这里可以看看效果:
通过执行代码:

f = imread('gray.jpg');
h = imhist(f);
h1 = h(1:10:256);
axis([0 256 0 15000]);
subplot(2,2,1);
plot(h);
subplot(2,2,3);
imshow(f);
g = histeq(f, 256);
h2 = imhist(g);
subplot(2,2,2);
plot(h2);
subplot(2,2,4);
imshow(g);
figure(2);
hnorm = imhist(f)./numel(f);
cdf = cumsum(hnorm);
x = linspace(0,1,256);
plot(x, cdf);
axis([0 1 0 1]);

由于原图像偏亮,所以我们均衡化后的图像,变得更暗,且可以看到我们cdf的变换函数
在这里插入图片描述
在这里插入图片描述

3.2直方图匹配

直方图匹配则就是将图的直方图按给定的直方图进行调整,函数任然用histeq(f, [])后面那个参数不跟数字而是一个行向量。

四.空间滤波

4.1线性空间滤波

说白了就是卷积。先翻转再平移。将卷积核旋转180°后进行对每一个像素平移。
那么可以用该函数:g = imfilter(f, w, mode, boundary, size)

  • f是原图像
  • w是卷积核
  • mode可为:corrconv。前者是相关对核无操作,后者是卷积会对卷积核旋转180°。
  • boundary:边界选项。P边界填充值P、'replicate' 复制边界拓展、symmetric镜像反射其边界拓展、circular将图像看为一个二维周期函数的一个周期进行拓展。
  • size:大小选项。'full'则按拓展后,也就是填充后的图像输出,'same'则与输入图像大小一致。

4.2非线性空间滤波

非线性空间滤波是指:类似于线性空间滤波,只不过对每个像素点的操作包含了一个邻域的像素,比如取核内像素的最大值。有俩函数,colfiltnlfilter一般来说追求速度用colfilt。它会生成一个最大的mn×MN的矩阵A,也就是邻域×图像大小的矩阵。在该矩阵中,每一列对应于中心位于图像内某个位置的邻域所包围的像素。
语法为:g = colfilt(f, [m n], 'sliding', @func, parameters)
@func说的叫函数句柄,也就是C语言中的函数指针。parameters则是func要用到的参数。
函数func则必须对矩阵的每一列操作,返回一个包含所有列的行向量v,v的第k个元素表示的是对A中的第k列进行func操作后的结果。所以A中可以有MN列,v的最大维度为1×MN。
所以我们可以用padarray进行填充:
g = padarray(f, [r c ], method, direction)
r c 是要增加的行列数
在这里插入图片描述
比如:

f = [1 2;3 4];
fp = padarray(f, [3 2], 'replicate', 'post');
disp(fp);
%%1     2     2     23     4     4     43     4     4     43     4     4     43     4     4     4
%%

五.IPT的标准空间滤波器

5.1线性空间滤波器

生成滤波器的语法w = fspecial('type', parameters)
在这里插入图片描述
在这里插入图片描述

5.2非线性空间滤波器

ordfilt2可以对图像领域中所包含的像素进行排序,然后使用排序结果确定的值来代替邻域中心像素的值。其他非线性滤波器后面会讲。
语法g = ordfilt2(f, order, domain)

  • 使用领域的一组排序元素中的第order来代替f中的元素。邻域由domain中的非零元素指定
  • domain是由0 1组成的矩阵。且能指定具体的“邻域”。
    比如最小值滤波:g = ordfilt2(f, 1, ones(m, n))
    也有最大值滤波:g = ordfilt2(f, m * n, ones(m, n))
    当然也有中值滤波:g = ordfilt2(f, median(1:m*n), ones(m, n))
    median可以按行向量求出每个行向量的中值,最后得到一个中值列向量。但。用ceil((m*n)/2)也行啊,用median还更费时间。。。

这篇关于Matlab数字图像处理学习记录【2】——亮度变换与空间滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008613

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个