OK6410A 开发板 (三) 13 u-boot-2021.01 boot 解析 U-boot 镜像运行部分 boot 详细解析2 relocate_vectors

本文主要是介绍OK6410A 开发板 (三) 13 u-boot-2021.01 boot 解析 U-boot 镜像运行部分 boot 详细解析2 relocate_vectors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从链接角度分析 u-boot.bin 的构成
从运行的角度分析 u-boot.bin 前 64byte  的 relocate
  • relocate_vectors 的实现
#ifdef CONFIG_HAS_VBAR// 虽然走的是这一套,但是找到的协处理器cp15的C12的实现(DDI0301H_arm1176jzfs_r0p7_trm.pdf)和下面的内容对不上// 那就分析 #else 那条路// 这条路 其实就是 架构实现(ARM1176) 对(#else那条路) 做出的优化// 后面在 DDI0301H_arm1176jzfs_r0p7_trm.pdf P254 找到了,继续分析这条路/** If the ARM processor has the security extensions,* use VBAR to relocate the exception vectors.*/ldr	r0, [r9, #GD_RELOCADDR]	/* r0 = gd->relocaddr */mcr     p15, 0, r0, c12, c0, 0  /* Set VBAR */
#else/** Copy the relocated exception vectors to the* correct address* CP15 c1 V bit gives us the location of the vectors:* 0x00000000 or 0xFFFF0000.*/// r0 = gd->relocaddr// gd->relocaddr 起始的 8个32bit是 relocated exception vectorsldr	r0, [r9, #GD_RELOCADDR]	/* r0 = gd->relocaddr */// 读 cp15 Register 1:控制寄存器 ,并选择 选择架构上指定的控制寄存器// 读到 r2中mrc	p15, 0, r2, c1, c0, 0	/* V bit (bit[13]) in CP15 c1 */// bit[13] //该位用于选择异常向量的位置://	0=选择的正常异常向量(地址范围0x00000000-0x0000001C)//	1=选择的高异常向量(地址范围0xFFFF0000-0xFFFF001C)。//一个实现可以提供一个输入信号来确定复位后该位的状态。// 选择目标地址ands	r2, r2, #(1 << 13)ldreq	r1, =0x00000000		/* If V=0 */ldrne	r1, =0xFFFF0000		/* If V=1 */// 从 gd->relocaddr 拷贝到 0x00000000,拷贝了8个32bitldmia	r0!, {r2-r8,r10}stmia	r1!, {r2-r8,r10}// 又拷贝了8个32bitldmia	r0!, {r2-r8,r10}stmia	r1!, {r2-r8,r10}
#endif
gd->relocaddr 的 1632bit 是什么b reset // 占用 1个 32bitldr pc, _undefined_instruction // 占用 1个32bitldr pc, _software_interruptldr pc, _prefetch_abortldr pc, _data_abortldr pc, _not_usedldr pc, _irqldr pc, _fiq_undefined_instruction: .word undefined_instruction // 占用1个32bit
_software_interrupt: .word software_interrupt
_prefetch_abort: .word prefetch_abort
_data_abort: .word data_abort
_not_used: .word not_used
_irq: .word irq
_fiq: .word fiq.balignl 16,0xdeadbeef // 占用1个32bit
0x00000000 在 芯片 memory map 的什么位置 // 0xFFFF0000 不存在于 memory map0x0000_0000 | 0x07FF_FFFF | 128MB  | Booting Device Region by XOM Setting 		| Mirrored Region
按照 ok6410a 的 电路图 OM[4:0]0011 , Boot device 为  RESERVED也就是说,但是 没有连接设备,那么 0x0000 0000 在哪里? // TODO
  • arch/arm/lib/vectors.S
.globl _start.section ".vectors", "ax"_start:b resetldr pc, _undefined_instructionldr pc, _software_interruptldr pc, _prefetch_abortldr pc, _data_abortldr pc, _not_usedldr pc, _irqldr pc, _fiq.globl _reset.globl _undefined_instruction.globl _software_interrupt.globl _prefetch_abort.globl _data_abort.globl _not_used.globl _irq.globl _fiq_undefined_instruction: .word undefined_instruction
_software_interrupt: .word software_interrupt
_prefetch_abort: .word prefetch_abort
_data_abort: .word data_abort
_not_used: .word not_used
_irq: .word irq
_fiq: .word fiq.balignl 16,0xdeadbeef.globl IRQ_STACK_START_IN
IRQ_STACK_START_IN:.word 0x0badc0de宏汇编bad_save_user_regsirq_save_user_regsirq_restore_user_regsget_bad_stackget_irq_stackget_fiq_stack.align 5
undefined_instruction:get_bad_stackbad_save_user_regsbl do_undefined_instruction.align 5
software_interrupt:get_bad_stackbad_save_user_regsbl do_software_interrupt.align 5
prefetch_abort:get_bad_stackbad_save_user_regsbl do_prefetch_abort.align 5
data_abort:get_bad_stackbad_save_user_regsbl do_data_abort.align 5
not_used:get_bad_stackbad_save_user_regsbl do_not_used.align 5
irq:get_bad_stackbad_save_user_regsbl do_irq.align 5
fiq:get_bad_stackbad_save_user_regsbl do_fiq
  • u-boot.lds
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{. = 0x00000000;. = ALIGN(4);.text :{*(.__image_copy_start)*(.vectors)arch/arm/cpu/arm1176/start.o (.text*)board/samsung/ok6410a/lowlevel_init.o (.text*)board/samsung/ok6410a/bl2_mmc_copy.o (.text*)}
  • arch/arm/lib/sections.c
char __image_copy_start[0] __attribute__((section(".__image_copy_start")));
问题
问题:relocate 的目标地址 0x0000 0000 在哪里?A 还没解决的问题relocate 之后,如果异常发生, 0x0000 0000 中的 每一个 入口指令是不是 会 地址相关?arm-linux-gnueabi-objdump  -D  u-boot > u-boot.dis 之后1.还没解决的问题发现 b reset 反汇编 为 b   5fb00300一旦reset异常发生,PC = 0x00000000此时 0x00000000 中 是 b reset 吗???linux 和 u-boot 也一样, 0x00000000 也写入了指令为什么 在linux管理时 reset 的时候,还是要执行 u-boot 呢?2. 已经解决的问题发现 ldr pc, _undefined_instruction 反汇编 为 ldr pc, [pc, #20]看起来 b reset 在 reset异常发生时没问题按道理来讲_undefined_instruction异常发生时,就会有问题,因为跳转的地址与pc相关之所以没发生问题,是因为做了fixloop对以下732bit做了fixloop,更改了以下732bit的值_undefined_instruction: .word undefined_instruction // 占用1个32bit_software_interrupt: .word software_interrupt_prefetch_abort: .word prefetch_abort_data_abort: .word data_abort_not_used: .word not_used_irq: .word irq_fiq: .word fiq// 第一个32bit ,更改为重定位过后 undefined_instruction 的地址// ldr pc, [pc, #20]的时候,pc中的值为重定位过后的函数的值,就不会出现问题了以上分析的详细过程原型 请参考 https://blog.csdn.net/u011011827/article/details/115241203

这篇关于OK6410A 开发板 (三) 13 u-boot-2021.01 boot 解析 U-boot 镜像运行部分 boot 详细解析2 relocate_vectors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007936

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象