Tensors张量操作

2024-05-27 15:44
文章标签 操作 tensors 张量

本文主要是介绍Tensors张量操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


定义Tensor

下面是一个常见的tensor,包含了里面的数值,属性,以及存储位置

tensor([[0.3565,0.1826,0.6719],[0.6695,0.5364,0.7057]],dtype=torch.float32,device='cuda:0')

Tensor的属性

Tensor属性描述了它们的形状、数据类型和存储它们的设备(CPU 或 GPU)

import torch
tensor = torch.rand( 3,4)
print(f"shape of tensor: {tensor. shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor. device}")

Shape of tensor: torch.size([3,4])

Datatype of tensor: torch.float32

Device tensor is stored on: cpu

Tensor存储的数值

Tensor 可以用多种方法进行初始化。

直接传数据

Tensor可以直接从数据进行创建,数据类型会自动适应。

import torch
data =[[1,2],[3,4]]
x_data = torch.tensor(data)
print(x_data)

tensor([[1,2],
        [3,4]])

使用Numpy数据

可以通过Numpy矩阵中进行创建

import torch
import numpy as np
np_array = np. array ([[1,2],[3,4]])
x_np = torch.from_numpy ( np_array)
print(x_np)
利用已有tensor

根据已有的数据形式(形状,数据类型),创建出新的tensor

data = [[1,2],[3,4]]
x_data = torch.tensor(data)
# 保持了x_data的数据属性与形状
x_ones = torch.ones_like(x_data)
print(f"ones Tensor: \n {x_ones} \n")
# 保持形状不变但改变数据属性的新张量
x_rand = torch.rand_like(x_data,dtype=torch.float)
print(f"Random Tensor: \n {x_rand} \n")

Tensor存储的位置

Tensor可以保存在GPU中,或者保存在CPU中,在二者中可以进行切换

  1. GPU中进行运算(前向传播、反向传播)
  2. CPU中进行数据读取(从内存读取数据)与写入(保存到硬盘中)

CPU->GPU 

import torch
shape = (2, 3, )
rand_tensor = torch.rand( shape)
print(rand_tensor)
if torch.cuda.is_available( ) :rand_tensor = rand_tensor.cuda()
print(rand_tensor)

输出:

tensor([[e.3565,0.1826,0.6719],[e.6695,0.5364,0.7057]])
tensor([[e.3565,0.1826,0.6719],[e.6695,0.5364,0.7057]],device= 'cuda:e ')

GPU->CPU

shape = (2, 3,)
rand_tensor = torch.rand( shape)
print(rand_tensor)
if torch.cuda.is_available( ):rand_tensor = rand_tensor.cuda()
print( rand_tensor)
cpu_tensor = rand _tensor.cpu()
print(cpu_tensor)

使用to()自动进行切换张量存储位置:

这个方法非常灵活,可以自动处理类型转换和设备迁移。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  
# 检查并设置设备
x_cpu = torch.tensor([[1., 2.], [3., 4.]])  
# 在CPU上的张量
x_gpu = x_cpu.to(device)  
# 移动到GPU

数据的运算

这些操作中的每一个都可以在GPU上运行(通常比在CPU上运行的速度更快)。

tensor = torch.tensor([[1,2],[ 3,4]])
#矩阵乘法
result_1 = tensor @ tensor
print( result_1)
print("矩阵乘法,result_1 = \n", result_1)
#矩阵对应位置的元素相乘
result_2 = tensor *tensor
print("元素乘法,result_2 = \n", result_2)
result_3 = tensor + tensor
print("元素加法,result_3 = \n" , result_3)
agg = tensor.sum( )
agg_item = agg.item()#使用item()获取里面的值
print("求和,agg_item = " , agg_item,type( agg_item) )

在PyTorch中,当你想要从一个标量张量(即形状为(1,)或者空的张量)中提取出Python的原生数值(例如整数、浮点数)时,可以使用.item()方法。这个方法会返回张量中的数据,将其转换为Python的基本数据类型。

import torch# 一个包含单个浮点数的张量
tensor_with_one_value = torch.tensor([3.5])# 使用.item()方法提取该值
value = tensor_with_one_value.item()print(value)  # 输出: 3.5

Tensor的拼接

将两个或者多个tensor进行拼接(concat),使用 torch.cat对tensor沿着一个特定的维度进行拼接。

tensor_1 = torch.tensor([[1,2,3,4]])
tensor_2 = torch.tensor([[5,6,7,8]])
print(torch.cat([tensor_1,tensor_2],dim=0))
print(torch.cat([tensor_1,tensor_2],dim=1))

我们平时的张量有两个维度↓和→:

↓就是0维度,→就是1维度。 

tensor([[1,2,3,4],[5,6,7,8]])
tensor([[1,2,3,4,5, 6,7,8]])

数据的转换

NumpyTensor

import torch
import numpy as np
n=np.ones ( 5)
t = torch.from_numpy(n)# 
[1. 1.1.1. 1.]
tensor([1., 1., 1., 1., 1.],dtype=torch.float64)

TensorNumpy

t = torch. ones ( 5)
n= t.numpy ()

图片转Tensor

from PIL import Image
from torchvision import transforms
image_path = r'image.png'
image = Image.open(image_path)
transform = transforms.ToTensor()
tensor_image = transform( image)
print(type(tensor_image) )# <class 'torch . Tensor' >

Tensor转图片

import torch
from torchvision import transforms
tensor_image = torch.randn( ( 3,224,224))
transformed_image = transforms.ToPILImage( )(tensor_image)
save_path = r "form_tensor .jpg'
#保存图像
transformed_image.save( save_path)

transforms模块是torchvision库中的一个重要组成部分,它提供了一系列预定义的图像转换方法,用于对图像数据进行各种预处理,如裁剪、缩放、旋转、归一化等,以便于输入深度学习模型进行训练或测试。

比如ToTensor:将PIL Image或numpy.ndarray转换为torch.FloatTensor,范围从[0, 255]变为[0.0, 1.0]。 

比如Normalize:对图像像素值进行归一化处理,常用于使数据分布更加一致,加速模型收敛。

transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

PyTorch处理图片案例

模拟从硬盘读取一张图片,使用pytorch在显卡上进行运算,随后把运算结果保存到硬盘

import torch
from torchvision import transforms
from PIL import Image
image_path = r"image.png"
save_path = r"result.png"
#加载图片
image = Image.open( image_path)transform = transforms. ToTensor()
#应用转换
tensor_image = transform( image)
print(tensor_image)
#检查CuDA是否可用并将tensor移至CUDA
if torch.cuda.is_available( ) :tensor_image = tensor_image.to( ' cuda ')
# 对每个元素加一
tensor_image += 0.1
# 将tensor移回CPU并转换回PIL图像
tensor_image = tensor_image.to( ' cpu ')
transformed_image = transforms.ToPILImage()(tensor_image)
#保存图像
transformed_image.save( save_path)

这篇关于Tensors张量操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007905

相关文章

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

线程的四种操作

所属专栏:Java学习        1. 线程的开启 start和run的区别: run:描述了线程要执行的任务,也可以称为线程的入口 start:调用系统函数,真正的在系统内核中创建线程(创建PCB,加入到链表中),此处的start会根据不同的系统,分别调用不同的api,创建好之后的线程,再单独去执行run(所以说,start的本质是调用系统api,系统的api

Java IO 操作——个人理解

之前一直Java的IO操作一知半解。今天看到一个便文章觉得很有道理( 原文章),记录一下。 首先,理解Java的IO操作到底操作的什么内容,过程又是怎么样子。          数据来源的操作: 来源有文件,网络数据。使用File类和Sockets等。这里操作的是数据本身,1,0结构。    File file = new File("path");   字

MySQL——表操作

目录 一、创建表 二、查看表 2.1 查看表中某成员的数据 2.2 查看整个表中的表成员 2.3 查看创建表时的句柄 三、修改表 alter 3.1 重命名 rename 3.2 新增一列 add 3.3 更改列属性 modify 3.4 更改列名称 change 3.5 删除某列 上一篇博客介绍了库的操作,接下来来看一下表的相关操作。 一、创建表 create

封装MySQL操作时Where条件语句的组织

在对数据库进行封装的过程中,条件语句应该是相对难以处理的,毕竟条件语句太过于多样性。 条件语句大致分为以下几种: 1、单一条件,比如:where id = 1; 2、多个条件,相互间关系统一。比如:where id > 10 and age > 20 and score < 60; 3、多个条件,相互间关系不统一。比如:where (id > 10 OR age > 20) AND sco

PHP7扩展开发之流操作

前言 啥是流操作?简单来讲就是对一些文件,网络的IO操作。PHP已经把这些IO操作,封装成流操作。这节,我们将使用PHP扩展实现一个目录遍历的功能。PHP示例代码如下: <?phpfunction list_dir($dir) {if (is_dir($dir) === false) {return;} $dh = opendir($dir);if ($dh == false) {ret

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

hibernate修改数据库已有的对象【简化操作】

陈科肇 直接上代码: /*** 更新新的数据并并未修改旧的数据* @param oldEntity 数据库存在的实体* @param newEntity 更改后的实体* @throws IllegalAccessException * @throws IllegalArgumentException */public void updateNew(T oldEntity,T newEntity

mysql中导入txt文件数据的操作指令

1 表tt的格式:    CREATE TABLE `tt` (   `ind` int NOT NULL auto_increment,   `name` char(100) default NULL,   PRIMARY KEY  (`ind`)  )   2 文件d.txt的内容示例:  1,a  2,b  3,c