LeetCode //C++ - 126. Word Ladder II

2024-05-27 13:52
文章标签 leetcode c++ ii word 126 ladder

本文主要是介绍LeetCode //C++ - 126. Word Ladder II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

126. Word Ladder II

A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s 1 s_1 s1 -> s 2 s_2 s2 -> … -> s k s_k sk such that:

  • Every adjacent pair of words differs by a single letter.
  • Every s i s_i si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.
  • sk == endWord

Given two words, beginWord and endWord, and a dictionary wordList, return all the shortest transformation sequences from beginWord to endWord, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words [beginWord, s 1 s_1 s1, s 2 s_2 s2, …, s k s_k sk].
 

Example 1:

Input: beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]
Output:[[“hit”,“hot”,“dot”,“dog”,“cog”],[“hit”,“hot”,“lot”,“log”,“cog”]]
Explanation: There are 2 shortest transformation sequences:
“hit” -> “hot” -> “dot” -> “dog” -> “cog”
“hit” -> “hot” -> “lot” -> “log” -> “cog”+

Example 2:

Input: beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”]
Output:[]
Explanation: The endWord “cog” is not in wordList, therefore there is no valid transformation sequence.

Constraints:
  • 1 <= beginWord.length <= 5
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 500
  • wordList[i].length == beginWord.length
  • beginWord, endWord, and wordList[i] consist of lowercase English letters.
  • beginWord != endWord
  • All the words in wordList are unique.
  • The sum of all shortest transformation sequences does not exceed 1 0 5 10^5 105.

From: LeetCode
Link: 126. Word Ladder II


Solution:

Ideas:
  • Initialization: An unordered set is used to quickly check if a word is in the dictionary (dict). A queue (q) manages the BFS starting with beginWord.
  • BFS Loop: The BFS iteratively transforms each character of the current word to explore all possible one-letter transformations. If these transformed words are in dict, they’re added to the queue for further exploration. parents keeps track of each word’s predecessors in the path.
  • Backtracking Function: Once the shortest paths are identified (found is true), the buildPaths function reconstructs the paths from endWord to beginWord using the parents map and accumulates them in ladders.
  • Handling Level-wise Exploration: visitedThisLevel prevents revisiting words in the same BFS level, optimizing the search and avoiding redundant paths.
Code:
class Solution {
public:vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {unordered_set<string> dict(wordList.begin(), wordList.end());vector<vector<string>> ladders;unordered_map<string, vector<string>> parents;queue<string> q;q.push(beginWord);bool found = false;while (!q.empty() && !found) {int levelSize = q.size();unordered_set<string> visitedThisLevel; // To handle duplicates in the current BFS levelfor (int i = 0; i < levelSize; ++i) {string currentWord = q.front();q.pop();string originalWord = currentWord; // Save the original word// Transform each character of the word to find all possible transformationsfor (char& ch : currentWord) {char originalChar = ch; // Save the original characterfor (ch = 'a'; ch <= 'z'; ++ch) {if (ch == originalChar) continue;if (dict.find(currentWord) != dict.end()) {if (currentWord == endWord) {found = true;}if (!found && visitedThisLevel.insert(currentWord).second) {q.push(currentWord);}parents[currentWord].push_back(originalWord);}}ch = originalChar; // Restore the original character}}// Remove visited words of this level from the dictionary to prevent going backwards in BFSfor (const string& word : visitedThisLevel) {dict.erase(word);}}if (found) {vector<string> path;buildPaths(endWord, beginWord, parents, path, ladders);}return ladders;}private:void buildPaths(const string& word, const string& beginWord,unordered_map<string, vector<string>>& parents,vector<string>& path, vector<vector<string>>& ladders) {if (word == beginWord) {path.push_back(word);vector<string> currentPath = path;reverse(currentPath.begin(), currentPath.end());ladders.push_back(currentPath);path.pop_back();return;}path.push_back(word);for (const string& parent : parents[word]) {buildPaths(parent, beginWord, parents, path, ladders);}path.pop_back();}
};

这篇关于LeetCode //C++ - 126. Word Ladder II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007659

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close