本文主要是介绍源码- Spark Broadcast源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本博文的主要内容包括:1、Broadcast功能描述
2、Broadcast创建过程
3、Broadcast读写原理
一、功能描述
Broadcast是指将数据从一个节点发送到其他节点,供其计算使用,是spark在计算过程中非常常用的方式,通常使用方式,包括共享配置文件,map数据集,树形数据结构等,为能够更好更快速为TASK任务使用相关变量。但是Broadcast不适合存放过大的数据,这会导致网络IO性能变差或者过重的单点压力。
Broadcast的基本用法:
本文是借鉴网络大神的经验,结合自己的走读的一些总结,如有雷同之处,希望谅解!
二、创建过程
Broadcast是典型的建造者模式方法,相对内部设计相对较为简单,同时初始化并非直接创建Broadcast对象,作用有两个方面:
1)依据配置属性(spark.broadcast.factory)创建BroadcastFactory对象 - 反射创建。
2)将sparkConf对象注入Broadcast中,同时定义压缩编码。
初始化入口sparkContext启动时创建,调用过程如下:
1)SparkContext#构造方法
2)SparkEnv#create
3)BroadcastManager#initialize()
4)TorrentBroadcastFactoryr#initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager)
5)TorrentBroadcast#initialize(_isDriver: Boolean, conf: SparkConf)
SparkContext初始化SparkEnv,在SparkEnv内创建BroadcastManager,代码如下:
SparkContext
- // Create the Spark execution environment (cache, map output tracker, etc)
- // 创建spark的执行环境
- private[spark] val env = SparkEnv.create(
- conf, // spark配置文件
- "<driver>",
- conf.get("spark.driver.host"), // 主机名
- conf.get("spark.driver.port").toInt, // 端口号
- isDriver = true, // 默认启动SparkContext客户端,便是Driver
- isLocal = isLocal,// 是否是本地运行,是通过master获取该值,如果是submit提交,请参考SparkSubmitArguments类,会将参数转换为master
- listenerBus = listenerBus
- /* spark监听总线(LiveListenerBus),他是负责监听spark事件,包括job启动和介绍、BlockManage的添加等等,简单理解UI能看到的变化都是这块监听的,
- * 如果有时间,可以将这块与大家分享一下,底层使用队列实现,典型观察者模式实现,未使用akka实现 */
- )
- SparkEnv.set(env) // 注册SparkEnv对象
SparkEnv中初始化BroadcastManager
- val blockManager = new BlockManager(executorId, actorSystem, blockManagerMaster,
- serializer, conf, securityManager, mapOutputTracker, shuffleManager)
- val connectionManager = blockManager.connectionManager
- val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
- val cacheManager = new CacheManager(blockManager)
BroadcastManager构造函数调用initialize方法构建
- // Called by SparkContext or Executor before using Broadcast
- // 一个context仅初始化一次,默认是Torrent
- private def initialize() {
- // TODO 初始化BroadcastFactory
- // 1.确定仅有第一次进入时,创建BroadcastFactory对象
- // 2.初始化BroadcastFactory,并与BroadcastManager建立hook
- synchronized {
- if (!initialized) {
- val broadcastFactoryClass =
- conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.TorrentBroadcastFactory") //默认采用<span style="font-family: Arial, Helvetica, sans-serif;">TorrentBroadcastFactory</span>
- broadcastFactory =
- Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]
- //初始化BroadcastFactory,并与BroadcastManager建立hook
- broadcastFactory.initialize(isDriver, conf, securityManager)
- //表示第一次进入完毕
- initialized = true
- }
- }
- }
TorrentBroadcastFactory调用initialize方法
- override def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
- TorrentBroadcast.initialize(isDriver, conf)
- }
将sparkConf对象注入Broadcast中,并定义压缩方式
- /** 初始化TorrentBroadcast属性 */
- def initialize(_isDriver: Boolean, conf: SparkConf) {
- TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
- synchronized {
- if (!initialized) {
- compress = conf.getBoolean("spark.broadcast.compress", true)
- compressionCodec = CompressionCodec.createCodec(conf)
- initialized = true
- }
- }
- }
broadcast是在sparkContext创建时完成的,broadcast类型、压缩方式也是在创建过程中完成的定义,但是,目前还无法实现app中不同job使用不同的broadcast,广播的方式只能选择TorrentBroadcast和HttpBroadcast的一种。spark默认使用TorrentBroadcast(并发),效率相对要比http要好,同时避免单机热点的产生,比较适合分布式系统的思想。思想类似于迅雷BT下载,已使用的executor越多,速度越快。
Broadcast创建
driver首先要将值序列化到byteArray中,然后再按block大小进行分割(默认是4M),将信息存放在driver的blockmanage中,并通知BlockManageMaster,完成注册,并可以让所有executor读取,存储方式MEMORY_AND_DISK。
使用write顺序:
1)SparkContext#broadcast 外层方法,使用sc.broadcast 进行广播
2) BroadcastManager#newBroadcast(value_ : T, isLocal: Boolean)
3)TorrentBroadcastFactory#newBroadcast(value_ : T, isLocal: Boolean, id:Long)
4)TorrentBroadcast#构造函数
5)TorrentBroadcast#writeBlocks
6)BlockManage#putBytes(
blockId: BlockId,
bytes: ByteBuffer,
level: StorageLevel,
tellMaster: Boolean = true,
effectiveStorageLevel:Option[StorageLevel] = None) 最终存储
当然,使用广播较为简单,但是,如果sparkContext长时间执行多个job时,则考虑注销广播,或者尽量广播要小,否则会造成性能严重下降,具体原因尚未研究。
注销方式代码如下:
- val broadcastValue = sc.broadcast(存储值)
- broadcastValue.unpersist() //方法一
- SparkEnv.get.broadcastManager.unbroadcast(id, false, false) //方法二
创建时,使用SparkContext的broadcast方法,并将值一直传递至TorrentBroadcast,并构建TorrentBroadcast对象,同时完成将值交给BlockManage进行注册,并序列化在本地存储。(SparkEnv.get.blockManager.putBytes方法)
TorrentBroadcast
- private[spark] class TorrentBroadcast[T: ClassTag](
- obj : T,
- @transient private val isLocal: Boolean,
- id: Long)
- extends Broadcast[T](id) with Logging with Serializable {
- /** 1.driver是直接读取本地的值
- * 2.其他executor是依靠blockManager读取(readObject) */
- @transient private var _value: T = obj
- /* 固定格式:
- * broadcastId = broadcast_广播ID
- * blockID = broadcast_广播ID_piece[1,2,3,4] */
- private val broadcastId = BroadcastBlockId(id)
- /** 1.广播值交给blockManager管理
- * 2.广播转换为ByteArray,返回数据块的长度 */
- private val numBlocks: Int = writeBlocks()
- override protected def getValue() = _value
- }
writeBlocks是主要执行写方法,主要功能便是按照定义的广播块大小切分数据(默认是4M,spark.broadcast.blockSize),其后将块注册blockManage,并写入本地磁盘中。
writeBlocks(){
1.blockifyObject 数据切分方法
2.BlockManage.putBytes 数据存储方法
}
blockifyObject 代码如下:
- /** 切分数据,方法较为实用,可作为工具类
- * @param obj 切分数据对象 */
- def blockifyObject[T: ClassTag](obj: T): Array[ByteBuffer] = {
- // TODO: Create a special ByteArrayOutputStream that splits the output directly into chunks
- // so we don't need to do the extra memory copy.
- // TODO 数据切块,按照默认的4M切分数据块,返回4MByteBuffer(数据体检变小)
- // 数据 -> 压缩 -> 序列化 -> 分割
- // 1. 声明输出流(定义压缩方式和序列化)
- // 2. 压缩后数据按4M进行分割
- // 3. 返回ByteBuffer字符
- // 1.0 定义输出流
- val bos = new ByteArrayOutputStream()
- // 1.1 包装压缩方式
- val out: OutputStream = if (compress) compressionCodec.compressedOutputStream(bos) else bos
- // 1.2 创建序列化对象
- val ser = SparkEnv.get.serializer.newInstance()
- // 1.3 包装序列化输出流(默认java序列化,不过一般推荐KryoSerializer,建议修改spark-defaults.conf)
- val serOut = ser.serializeStream(out)
- // 1.4 将value写至ByteArray中
- serOut.writeObject[T](obj).close()
- val byteArray = bos.toByteArray
- // 2.0 将ByteArray转换为输入流
- val bais = new ByteArrayInputStream(byteArray)
- // 2.1 获取分割块数,ceil有余数+1
- val numBlocks = math.ceil(byteArray.length.toDouble / BLOCK_SIZE).toInt
- // 2.2 定义数据块集合
- val blocks = new Array[ByteBuffer](numBlocks)
- // 2.3 定义块ID
- var blockId = 0
- // 2.4 循环按4M分割数据块,步长为4M
- for (i <- 0 until (byteArray.length, BLOCK_SIZE)) {
- // 2.4.1 定义装载4M的byte的容器
- val thisBlockSize = math.min(BLOCK_SIZE, byteArray.length - i)
- val tempByteArray = new Array[Byte](thisBlockSize)
- // 2.4.2 装载数据
- bais.read(tempByteArray, 0, thisBlockSize)
- blocks(blockId) = ByteBuffer.wrap(tempByteArray)
- // 2.4.3 index加一
- blockId += 1
- }
- // 3.0 切分结束,关闭流
- bais.close()
- // 3.1 返回流
- blocks
- }
broadcase写入是优先写入依据存储策略写入本地(BlockManage#putBytes方法),既然序列化数据是本地存储,由此而来的问题是读取问题,BlockManage存储数据并不似hdfs会依据备份策略存储多份数据放置不同节点(但是多提一句,spark的taskScheblue是拥有类似机架感知策略分配任务),如没有备份数据,那么必然产生一下数个问题:
1.节点故障,无法访问节点数据
2.数据热点,所有任务皆使用该数据
3.网络传输,所有节点频繁访问单节点
那么解决该问题,spark并没有使用HDFS的思想,而选择是P2P点对点方式(BT下载)解决问题,是只要使用过broadcase数据,则在本接节点存储数据,由此变成新的数据源,随和数据源不断增加速度也会越来越快,刚开始传输则相对会慢一些,同时,以上不建议使用大文件broadcase,亦是如此,如果使用较为频繁的数据,他相当于每个节点都要存储一份,形成网状传输方式交换数据,因此建议存储配置文件或某种数据结构为上佳选择。
调用顺序:
1)TorrentBroadcast#readObject()
2)TorrentBroadcast#readBlocks()
3)BlockManage#getLocalBytes(blockId:BlockId) / getRemoteBytes(blockId: BlockId)
4)BlockManage#putBytes()
readObject是broadcase读取的主方法,管理整个读取策略
- /** Used by the JVM when deserializing this object. */
- private def readObject(in: ObjectInputStream) {
- // TODO 读取广播变量,有便读取本地,没有则远程并存储在本地
- // 1.0 可读取对象中静态变量
- in.defaultReadObject()
- // 2.0 读取广播变量(单个executor独享)
- TorrentBroadcast.synchronized {
- // 2.1 读取本地广播数据
- SparkEnv.get.blockManager.getLocal(broadcastId).map(_.data.next()) match {
- // 2.2 获取本地数据成功
- case Some(x) =>
- _value = x.asInstanceOf[T]
- // 2.3 获取本地数据失败
- case None =>
- // 2.4 获取Blocks,同时将块存储到本地
- logInfo("启动读取 broadcast variable " + id)
- val start = System.nanoTime()
- val blocks = readBlocks()
- val time = (System.nanoTime() - start) / 1e9
- logInfo("Reading broadcast variable " + id + " took " + time + " s")
- // 2.5 将数据块反序列化,并解压缩
- _value = TorrentBroadcast.unBlockifyObject[T](blocks)
- // Store the merged copy in BlockManager so other tasks on this executor don't
- // need to re-fetch it.
- SparkEnv.get.blockManager.putSingle(
- broadcastId, _value, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- }
- }
- }
- /** Fetch torrent blocks from the driver and/or other executors. */
- private def readBlocks(): Array[ByteBuffer] = {
- // Fetch chunks of data. Note that all these chunks are stored in the BlockManager and reported
- // to the driver, so other executors can pull these chunks from this executor as well.
- // 1.0 定义数据块集合
- val blocks = new Array[ByteBuffer](numBlocks)
- // 1.1 引用blockManager
- val bm = SparkEnv.get.blockManager
- // 2.0 循环遍历所有块,避免访问热点,随机顺序读
- for (pid <- Random.shuffle(Seq.range(0, numBlocks))) {
- // 2.1 组装块ID
- val pieceId = BroadcastBlockId(id, "piece" + pid)
- // First try getLocalBytes because there is a chance that previous attempts to fetch the
- // broadcast blocks have already fetched some of the blocks. In that case, some blocks
- // would be available locally (on this executor).
- // 2.2 他会先查本地,继而查询远程,但是前面已经查找的是广播,现在查找的是认数据块(区别)
- var blockOpt = bm.getLocalBytes(pieceId)
- // 2.3 如果本地为查询到结果,则通过blockManager远程获取,并将数据存储到本地
- if (!blockOpt.isDefined) {
- blockOpt = bm.getRemoteBytes(pieceId)
- blockOpt match {
- case Some(block) =>
- // If we found the block from remote executors/driver's BlockManager, put the block
- // in this executor's BlockManager.
- SparkEnv.get.blockManager.putBytes(
- pieceId,
- block,
- StorageLevel.MEMORY_AND_DISK_SER,
- tellMaster = true)
- case None =>
- throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
- }
- }
- // If we get here, the option is defined.
- // 3.0 赋值数据块集合
- blocks(pid) = blockOpt.get
- }
- // 3.1 返回数据块
- blocks
- }
相关配置属性说明:(在spark-default.conf中设置)
spark.broadcast.factory 定义使用http或Torrent方式,默认是Torrent,无需修改
spark.broadcast.blockSize 数据库块大小,blockifyObject依据此属性切分数据块,默认4M
spark.broadcast.compress 是否压缩,默认是使用,sparkcontext初始化该属性,无需修改。
这篇关于源码- Spark Broadcast源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!