[大师C语言(第十二篇)]C语言堆排序技术详解

2024-05-27 09:12

本文主要是介绍[大师C语言(第十二篇)]C语言堆排序技术详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构的特点来进行排序。堆是一种近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。堆排序是一种不稳定的排序算法,其时间复杂度为O(nlogn),在处理大数据集时效率较高。

第一部分:堆的基本概念与性质

1.1 堆的定义

堆是一种特殊的完全二叉树,它满足两个性质:

  • 结构性:堆是一个完全二叉树,即树中的每一层都是满的,除了可能的最后一层,最后一层的节点从左到右排列。
  • 堆序性:对于最大堆(Max Heap)来说,每个父节点的值都大于或等于其子节点的值;对于最小堆(Min Heap)来说,每个父节点的值都小于或等于其子节点的值。

1.2 堆的存储

堆通常使用数组来存储,这是因为堆是一种完全二叉树,而完全二叉树非常适合用数组来表示。对于数组中的任意位置i的元素,其左子节点的位置为2i+1,右子节点的位置为2i+2,父节点的位置为(i-1)/2。

1.3 堆的操作

堆的基本操作包括:

  • 初始化:创建一个空堆。
  • 插入:向堆中插入一个新元素。
  • 删除:从堆中删除一个元素。
  • 建立堆:将一个无序的数组转换为堆。
  • 堆排序:利用堆进行排序。

1.4 堆的建立

建立堆的过程是将一个无序的完全二叉树调整为堆的过程。这个过程通常从最后一个非叶子节点开始,逐个节点进行“下沉”操作,直到根节点。

1.5 代码实现:建立堆

以下是建立最大堆的C语言代码示例:

#include <stdio.h>void heapify(int arr[], int n, int i) {int largest = i; // 初始化最大元素索引为根节点int left = 2 * i + 1; // 左子节点int right = 2 * i + 2; // 右子节点// 如果左子节点大于根节点if (left < n && arr[left] > arr[largest])largest = left;// 如果右子节点大于最大元素if (right < n && arr[right] > arr[largest])largest = right;// 如果最大元素不是根节点,交换之if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;// 递归地调整受影响的子树heapify(arr, n, largest);}
}void buildHeap(int arr[], int n) {// 从最后一个非叶子节点开始,逐个进行堆化for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);
}int main() {int arr[] = {12, 11, 13, 5, 6, 7};int n = sizeof(arr) / sizeof(arr[0]);buildHeap(arr, n);printf("建立的最大堆: \n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");return 0;
}

1.6 结论

堆是一种高效的数据结构,它可以用于实现优先队列,也可以用于排序算法。在第一部分中,我们介绍了堆的基本概念、存储方式、基本操作以及如何建立堆。在接下来的两部分中,我们将深入探讨堆排序算法的具体实现和性能分析。请继续关注,以获得更全面的技术解析。

第二部分:堆排序算法的实现

2.1 算法概述

堆排序(Heap Sort)是一种基于堆的排序算法。它将数组转换成一个最大堆,然后将堆顶元素(即最大元素)与堆底元素交换,然后减少堆的大小,对剩余的堆进行堆化。重复这个过程,直到堆的大小为1,此时数组已经有序。

2.2 算法步骤

堆排序的步骤如下:

  1. 建立堆:将输入的数组转换成一个最大堆。
  2. 交换堆顶与堆底:将堆顶元素(最大元素)与堆底元素交换,然后将堆的大小减1,这样最大元素就被放到了数组的末尾。
  3. 堆化剩余元素:对剩下的堆进行堆化,以保持最大堆的性质。
  4. 重复步骤2和3:重复交换堆顶与堆底元素,并堆化剩余元素,直到堆的大小为1。

2.3 代码实现

以下是堆排序的C语言实现:

#include <stdio.h>void heapify(int arr[], int n, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < n && arr[left] > arr[largest])largest = left;if (right < n && arr[right] > arr[largest])largest = right;if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;heapify(arr, n, largest);}
}void heapSort(int arr[], int n) {// 建立最大堆for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// 一个个从堆顶取出元素for (int i = n - 1; i >= 0; i--) {// 移动当前根节点到数组末尾int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 对剩余的堆进行堆化heapify(arr, i, 0);}
}int main() {int arr[] = {12, 11, 13, 5, 6, 7};int n = sizeof(arr) / sizeof(arr[0]);heapSort(arr, n);printf("排序后的数组: \n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");return 0;
}

2.4 算法分析

  • 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n是数组的长度。建立堆的时间复杂度为O(n),每次堆化的时间复杂度为O(logn),共需进行n-1次堆化。
  • 空间复杂度:堆排序是原地排序算法,除了交换元素需要常数级的额外空间外,不需要额外的存储空间,因此空间复杂度为O(1)。
  • 稳定性:堆排序是不稳定的排序算法,因为相同值的元素可能会因为堆化操作而改变它们的相对顺序。

2.5 结论

堆排序是一种高效的排序算法,特别适合于数据量较大的情况。它的主要优点是时间复杂度较低,且空间复杂度为常数级别。然而,由于其不稳定性,在某些特定场景下可能会受到影响。在第三部分中,我们将比较堆排序与其他排序算法的性能,并讨论堆排序在实际应用中的适用性。请继续关注,以获得更全面的技术解析。

第三部分:堆排序的性能比较与应用分析

3.1 性能比较

堆排序与其他排序算法相比,具有以下特点:

  • 时间复杂度:堆排序的时间复杂度为O(nlogn),这与快速排序和归并排序的最佳和平均情况下的时间复杂度相同。但是,快速排序在实际应用中通常更快,因为它的内部循环可以有效地在内存中执行。归并排序则需要额外的存储空间,但在处理链表时更为高效。
  • 空间复杂度:堆排序是原地排序算法,空间复杂度为O(1),这与快速排序相同。归并排序的空间复杂度为O(n),因为它需要额外的存储空间来合并两个有序数组。
  • 稳定性:堆排序是不稳定的排序算法,这与快速排序相同。归并排序是稳定的,因为它会保持相等元素的原始顺序。
  • 最坏情况:堆排序的最坏情况时间复杂度为O(nlogn),而快速排序在最坏情况下的时间复杂度为O(n^2)。归并排序的最坏情况时间复杂度也是O(nlogn)。

3.2 应用分析

堆排序在以下场景中特别有用:

  • 内存限制严格:由于堆排序是原地排序,它不需要额外的存储空间,因此在内存受限的环境中非常适用。
  • 数据量大:当数据量非常大时,堆排序的时间复杂度优势使其成为一个高效的选择。
  • 实时系统:在实时系统中,堆排序的确定性时间复杂度使其成为一个可靠的选择,因为它可以提供一致的性能。

然而,堆排序也有其局限性:

  • 不稳定性:对于需要保持相等元素原始顺序的应用,堆排序可能不是最佳选择。
  • 常数因子:尽管堆排序的时间复杂度与快速排序和归并排序相同,但它的常数因子通常较大,这意味着在实际应用中可能比其他排序算法慢。

3.3 结论

堆排序是一种高效的排序算法,特别适合于数据量大且内存受限的环境。它的主要优势在于其时间复杂度和空间复杂度。然而,由于其不稳定性以及可能的性能问题,堆排序可能不是所有场景下的最佳选择。在选择排序算法时,应该考虑数据的特性和应用的需求,以确定最合适的排序算法。

通过本文的三个部分,我们详细介绍了堆排序的原理、实现和性能分析。堆排序作为一种高效的排序算法,在特定场景下仍然是一个非常有用的工具。然而,它并不是万能的,了解其优势和局限性对于在实际应用中选择合适的排序算法至关重要。希望本文能够为读者提供深入的技术见解,帮助更好地理解和应用堆排序。

这篇关于[大师C语言(第十二篇)]C语言堆排序技术详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007048

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时