Pytorch深度学习实践笔记5(b站刘二大人)

2024-05-27 06:04

本文主要是介绍Pytorch深度学习实践笔记5(b站刘二大人),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

视频来自【b站刘二大人】

目录

1 Linear Regression

2 Dataloader 数据读取机制

3 代码


1 Linear Regression


使用Pytorch实现,步骤如下:
PyTorch Fashion(风格)

  1. prepare dataset
  2. design model using Class ,前向传播,计算y_pred
  3. Construct loss and optimizer,计算loss,Optimizer 更新w
  4. Training cycle (forward,backward,update)




2 Dataloader 数据读取机制

 

  • Pytorch数据读取机制

一文搞懂Pytorch数据读取机制!_pytorch的batch读取数据-CSDN博客

  • 小批量数据读取
import torch  
import torch.utils.data as Data  BATCH_SIZE = 3x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)for epoch in range(3):  for step, (batch_x, batch_y) in enumerate(loader):  print('epoch', epoch,  '| step:', step,  '| batch_x', batch_x,  '| batch_y:', batch_y)  




3 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01) # training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):  y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度optimizer.step() # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("SGD")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • 几种不同的优化器对应的结果:

Pytorch优化器全总结(三)牛顿法、BFGS、L-BFGS 含代码​

pytorch LBFGS_lbfgs优化器-CSDN博客​

scg.step() missing 1 required positiona-CSDN博客​



 



 



 



 

  • LFBGS 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.LBFGS(model.parameters(), lr = 0.1) # model.parameters()自动完成参数的初始化操作,这个地方我可能理解错了loss = torch.Tensor([1000.])
# training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):def closure():y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度return lossloss = closure()optimizer.step(closure) # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("LBFGS(lr = 0.1)")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • Rprop:

Rprop 优化方法(弹性反向传播),适用于 full-batch,不适用于 mini-batch,因而在 mini-batch 大行其道的时代里,很少见到。
优点:它可以自动调节学习率,不需要人为调节
缺点:仍依赖于人工设置一个全局学习率,随着迭代次数增多,学习率会越来越小,最终会趋近于0
结果:修改学习率和epoch均不能使其表现良好,无法满足1e-7精度条件下收敛



 

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

这篇关于Pytorch深度学习实践笔记5(b站刘二大人)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006667

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确