Pytorch深度学习实践笔记5(b站刘二大人)

2024-05-27 06:04

本文主要是介绍Pytorch深度学习实践笔记5(b站刘二大人),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

视频来自【b站刘二大人】

目录

1 Linear Regression

2 Dataloader 数据读取机制

3 代码


1 Linear Regression


使用Pytorch实现,步骤如下:
PyTorch Fashion(风格)

  1. prepare dataset
  2. design model using Class ,前向传播,计算y_pred
  3. Construct loss and optimizer,计算loss,Optimizer 更新w
  4. Training cycle (forward,backward,update)




2 Dataloader 数据读取机制

 

  • Pytorch数据读取机制

一文搞懂Pytorch数据读取机制!_pytorch的batch读取数据-CSDN博客

  • 小批量数据读取
import torch  
import torch.utils.data as Data  BATCH_SIZE = 3x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)for epoch in range(3):  for step, (batch_x, batch_y) in enumerate(loader):  print('epoch', epoch,  '| step:', step,  '| batch_x', batch_x,  '| batch_y:', batch_y)  




3 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01) # training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):  y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度optimizer.step() # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("SGD")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • 几种不同的优化器对应的结果:

Pytorch优化器全总结(三)牛顿法、BFGS、L-BFGS 含代码​

pytorch LBFGS_lbfgs优化器-CSDN博客​

scg.step() missing 1 required positiona-CSDN博客​



 



 



 



 

  • LFBGS 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.LBFGS(model.parameters(), lr = 0.1) # model.parameters()自动完成参数的初始化操作,这个地方我可能理解错了loss = torch.Tensor([1000.])
# training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):def closure():y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度return lossloss = closure()optimizer.step(closure) # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("LBFGS(lr = 0.1)")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • Rprop:

Rprop 优化方法(弹性反向传播),适用于 full-batch,不适用于 mini-batch,因而在 mini-batch 大行其道的时代里,很少见到。
优点:它可以自动调节学习率,不需要人为调节
缺点:仍依赖于人工设置一个全局学习率,随着迭代次数增多,学习率会越来越小,最终会趋近于0
结果:修改学习率和epoch均不能使其表现良好,无法满足1e-7精度条件下收敛



 

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

这篇关于Pytorch深度学习实践笔记5(b站刘二大人)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006667

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个