我让gpt4o给我推荐了一千多次书 得到了这些数据

2024-05-27 03:04

本文主要是介绍我让gpt4o给我推荐了一千多次书 得到了这些数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  事情是这样的,我们公司不是有个读书小组嘛,但是今年大家都忙于工作,忽视了读书这件事,所以我就想着搞个群机器人,让它明天定时向群里推荐一本书,用来唤起大家对读书的兴趣。但在调试的过程中就发现gpt4o老喜欢推荐同样的几本书,这可就勾起我的好奇心了,是不是gpt4o就只知道推荐那几本,正好周末有空,我就斥巨资调用gpt4o的接口让它给我推荐书,调用1000次+,发现gpt4o最喜欢的书是…… 具体让我们来看下推荐结果的简单分析。

TOP20

  首先我们直接看下Top20推荐书及其所占推荐比例:
在这里插入图片描述

  排名前三的分别是《百年孤独》《人类简史:从动物到上帝》《杀死一直知更鸟》,前三的推荐比例接近一半,尤其是第一的《百年孤独》,在一千多次推荐中直接占有了超过25%的推荐比例,说明gpt4o是非常喜欢《百年孤独》这本书。

  从上图中也可以看到,推荐比例前20的书都是一些很知名的书,我自己的话仅有其中6本没有看过,说来惭愧排名第一的《百年孤独》我自己收藏了一本纸质版,但一直都没看进去过,之前晚上传把里面任务的名字换成乡村爱情里角色的名字有利于阅读,不知道是真是假。 扯远了,gpt4o推荐排前二十书还是很推荐阅读的。

TOP50

  这里我也顺便将推荐排名前50的书及推荐次数列在下面,当然在总的1608次推荐里,gpt4o一共推荐出了200多本书,看剩下没列出的推荐次数都是1-2次,而且有些书根本就不存在(应该是大模型幻觉),所以我这里就不再列出。

书名推荐次数
百年孤独431
人类简史:从动物到上帝244
杀死一只知更鸟99
枪炮、病菌与钢铁:人类社会的命运93
三体87
思考,快与慢78
一九八四76
追风筝的人52
小王子37
了不起的盖茨比34
苏菲的世界29
高效能人士的七个习惯27
战争与和平26
基地26
挪威的森林20
原子习惯14
如何赢得朋友与影响他人11
从优秀到卓越11
影响力9
被讨厌的勇气9
沙丘8
霍乱时期的爱情8
活着8
银河系漫游指南7
从零到一7
成为7
2001:太空漫游7
自控力6
当下的力量6
当呼吸化为空气6
习惯的力量5
悉达多5
老人与海5
心流:最优体验心理学4
无人生还4
史蒂夫·乔布斯传4
少有人走的路4
从0到14
自私的基因3
自卑与超越3
学会提问3
心态:成功的心理学3
深度工作3
穷爸爸富爸爸3
局外人3
活出生命的意义3
海伯利安3
创新者的窘境3
消失的爱人2
堂吉诃德2

统计方法

  这里公开下我的统计代码,如果大家有兴趣可以复现下,或者研究下其他LLM模型推荐的数据,这里主体用langChain实现,用到了gpt4o来推荐书,然后用了deepseek用来洗数据统计(主要是便宜),最后两个模型总共花了20多块钱(RMB)。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser,JsonOutputParser
from langchain_core.runnables import RunnablePassthrough
from collections import Counter
import json
from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completedgpt4o = ChatOpenAI(model="gpt-4o", max_tokens=1024, temperature=1)  # 这里temperature设置为1,增加返回结果的随机性
recommend_prompt = ChatPromptTemplate.from_messages([("human", "请给我推荐一本你认为比较好的书"),]
)
recommend_chain = recommend_prompt | gpt4o | StrOutputParser()deepseek = ChatOpenAI(model="deepseek-chat",base_url = "https://api.deepseek.com", api_key = 'sk-xxxxxxxxxxxxx', max_tokens=1024, temperature=0)
book_name_prompt = ChatPromptTemplate.from_template('请从下面这段文字中提取出其中的书名,用jsonArray的形式返回,比如["百年孤独","学会提问"],其他任何内容都不要返回。 \n\n {content}'
)
# 用deepseek将gpt4的推荐结果中的书名提取出来
composed_chain =  {"content":recommend_chain} | book_name_prompt | deepseek | JsonOutputParser()frequency_counter = Counter()
def invoke_with_catch():try:res = composed_chain.invoke({})return resexcept Exception as e:print(f"Exception occurred: {e}")return []def main():# 这里用线程池提升统计速度 with ThreadPoolExecutor(max_workers=10) as executor:  futures = [executor.submit(invoke_with_catch) for _ in range(1000)]for future in as_completed(futures):res = future.result()if res is not None:print(res)frequency_counter.update(res)if __name__ == "__main__":main()

这篇关于我让gpt4o给我推荐了一千多次书 得到了这些数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006345

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X