本文主要是介绍传统RNN网络及其案例--人名分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
传统的RNN模型简介
RNN
先上图
这图看起来莫名其妙,想拿着跟CNN对比着学第一眼看上去有点摸不着头脑,其实我们可以把每一个时刻的图展开来,如下
其中,为了简化计算,我们默认每一个隐层参数相同,这样看来RNN的结构就比较简单了,相比较CNN来说,RNN引入了更多的时序信息。
LSTM
在训练 RNN 时,每个时间步的输出都依赖于之前时间步的状态,这种依赖关系形成了一个链式结构。当反向传播时,梯度需要通过多个时间步传播回去,由于链式法则的存在,这个过程中梯度会多次进行乘法运算。如果这些乘法运算的结果小于1,梯度就会随着时间步的增加逐渐衰减,最终可能消失到几乎为零,就会导致梯度消失。RNN 中常用的激活函数如 Sigmoid 或者 tanh 函数,它们的输出范围都在 (0, 1) 或者 (-1, 1) 之间。在反向传播时,如果梯度在这些函数的导数范围内,则可以稳定地传播;但如果超出了这个范围,梯度可能会指数级增长或减少,导致梯度爆炸。而且这些在处理长序列时特别容易发生,因此,出现了RNN的改良版,LSTM。
先看图:
谈到LSTM就无法避免的提及它的三个门和最上面的记忆单元
-
记忆单元:记忆单元是LSTM的核心,用于存储信息。它可以看作是一条信息通道,贯穿整个 LSTM单元链条,允许信息直接传递,减少信息丢失。
-
遗忘门:遗忘门决定哪些信息需要从记忆单元中删除。它通过sigmoid函数(将当前输入和前一时刻的隐藏状态作为输入)输出一个0到1之间的值。接近0的值表示需要遗忘的信息,接近1的值表示需要保留的信息。
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf⋅[ht−1,xt]+bf)
-
输入门: 输入门决定哪些新的信息需要添加到记忆单元中。它由两个部分组成:一个sigmoid层决定哪些值将被更新;一个tanh层生成新的候选值向量。
i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi⋅[ht−1,xt]+bi)
C ~ t = tanh ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC⋅[ht−1,xt]+bC)
-
输出门:输出门决定记忆单元的哪些部分将被输出作为当前时刻的隐藏状态。它通过sigmoid层和tanh层来实现。
o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo⋅[ht−1,xt]+bo)
h t = o t ∗ tanh ( C t ) h_t = o_t * \tanh(C_t) ht=ot∗tanh(Ct)
LSTM的工作流程如下 -
遗忘阶段:计算遗忘门的值,以确定当前记忆单元状态中需要遗忘的部分。
C t = f t ∗ C t − 1 C_t = f_t * C_{t-1} Ct=ft∗Ct−1 -
输入阶段:计算输入门的值,并生成新的候选记忆内容。
C t = C t + i t ∗ C ~ t C_t = C_t + i_t * \tilde{C}_t Ct=Ct+it∗C~t -
更新记忆单元:结合遗忘门和输入门的输出,更新当前记忆单元的状态。
-
输出阶段:计算输出门的值,并生成新的隐藏状态。
完整公式流程:
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf⋅[ht−1,xt]+bf)
i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi⋅[ht−1,xt]+bi)
C ~ t = tanh ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC⋅[ht−1,xt]+bC)
C t = f t ∗ C t − 1 + i t ∗ C ~ t C_t = f_t * C_{t-1} + i_t * \tilde{C}_t Ct=ft∗Ct−1+it∗C~t
o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo⋅[ht−1,xt]+bo)
h t = o t ∗ tanh ( C t ) h_t = o_t * \tanh(C_t) ht=ot∗tanh(Ct)
GRU
LSTM固然很强,解决了RNN对于长序列模型表现很拉跨的难题,但是仔细查看LSTM的过程就会发现,相对于RNN来说他引入了太多的参数,很容易就过拟合和训练时间大大加长,因此,GRU改进这一问题
-
更新门:更新门控制着前一时间步的信息和当前时间步的新信息之间的混合。它通过sigmoid函数决定有多少过去的信息需要保留,以及有多少新的信息需要添加。
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz⋅[ht−1,xt]+bz)
-
重置门:重置门控制着前一时间步的隐藏状态在当前时间步中被遗忘的比例。它通过sigmoid函数决定有多少前一时间步的信息需要被重置。
r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr⋅[ht−1,xt]+br)
-
候选隐藏状态:候选隐藏状态结合了重置门的结果,决定当前时间步的隐藏状态。
h ~ t = tanh ( W ⋅ [ r t ∗ h t − 1 , x t ] + b ) \tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) h~t=tanh(W⋅[rt∗ht−1,xt]+b)
-
隐藏状态:最终的隐藏状态是更新门和候选隐藏状态的组合。
h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t ht=(1−zt)∗ht−1+zt∗h~t
工作流程如下:
-
重置阶段:计算重置门的值,以确定前一时间步的信息在当前时间步中被重置的比例。
r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr⋅[ht−1,xt]+br)
-
更新阶段:计算更新门的值,以确定有多少信息从前一时间步保留到当前时间步。
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz⋅[ht−1,xt]+bz)
-
候选隐藏状态阶段:计算候选隐藏状态,该状态结合了重置门的结果和当前输入信息。
h ~ t = tanh ( W ⋅ [ r t ∗ h t − 1 , x t ] + b ) \tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) h~t=tanh(W⋅[rt∗ht−1,xt]+b)
-
隐藏状态更新阶段:结合更新门和候选隐藏状态,更新当前时间步的隐藏状态。
h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t ht=(1−zt)∗ht−1+zt∗h~t
完整工作流程
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz⋅[ht−1,xt]+bz)
r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr⋅[ht−1,xt]+br)
h ~ t = tanh ( W ⋅ [ r t ∗ h t − 1 , x t ] + b ) \tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) h~t=tanh(W⋅[rt∗ht−1,xt]+b)
h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t ht=(1−zt)∗ht−1+zt∗h~t
使用传统RNN模型来进行人名分类
1. 准备工作
-
要用到的数据集点此下载https://download.pytorch.org/tutorial/data.zip,备用地址,点击下载https://www.123pan.com/s/vgXtjv-BFU3v.html
-
导入一些包和写一个读取数据的函数(这段代码不是重点,直接抄就行了,只需要记住几个关键的变量)
category_lines: 人名类别与具体人名对应关系的字典,形式为{人名类别:[人名1,人名2,...]} all_categories:所有的类别构成的列表 all_letters:所有的字符
import torch from io import open import glob import os import unicodedata import string import random import time import math import torch.nn as nn import matplotlib.pyplot as pltdata_path = './data/names/' all_letters = string.ascii_letters + " .,;'" def unicodeToAscii(text):"""Converts a Unicode string to an ASCII string.Args:text (str): The Unicode string to convert.Returns:str: The ASCII string."""return ''.join([unicodedata.normalize('NFKD', char)for char in textif not unicodedata.combining(char)]).encode('ascii', 'ignore').decode('ascii')def readLines(filename):lines = open(filename, encoding='utf-8').read().strip().split('\n')return [unicodeToAscii(line) for line in lines]# 构建一个人名类别与具体人名对应关系的字典 category_lines = {}# 构建所有类别的列表 all_categories = []# 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历 for filename in glob.glob(data_path + '*.txt'):category = os.path.splitext(os.path.basename(filename))[0]all_categories.append(category)lines = readLines(filename)# 将类别与人名对应关系存储到字典中category_lines[category] = lines# 测试 print(category_lines['Italian'][:5])
-
字符无法直接被网络识别,因此要将其编码,这里使用最简单的one-hot编码,实现一个函数
lineToTensor(line)
,将输入的名字编码成张量def lineToTensor(line):# 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters# 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示tensor = torch.zeros(len(line), 1, len(all_letters))# 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1for li, letter in enumerate(line):tensor[li][0][all_letters.find(letter)] = 1return tensor # 测试 line = "Bai" tensor = lineToTensor(line) print("line_tensor:", tensor) print("line_tensor_size:", tensor.size())
2. 模型搭建
-
搭建RNN模型
class RNN(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(RNN, self).__init__()# input_size: 输入数据的特征维度# hidden_size: RNN隐藏层的最后一个维度# output_size: RNN网络最后线性层的输出维度# num_layers: RNN网络的层数self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.rnn = nn.RNN(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden):# input: 人名分类器中的输入张量,形状是1*n_letters# hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size# 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度input1 = input1.unsqueeze(0)rr, hn = self.rnn(input1, hidden)# 将RNN中获得的结果通过线性层变换和softmax函数输出return self.softmax(self.linear(rr)), hndef initHidden(self):# 初始化隐藏层张量,全0张量,维度是3return torch.zeros(self.num_layers, 1, self.hidden_size)
-
搭建LSTM模型
class LSTM(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(LSTM, self).__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden, c):# 注意:LSTM网络的输入有三个张量,不能忘记细胞状态Cinput1 = input1.unsqueeze(0)rr, (hn, cn) = self.lstm(input1, (hidden, c))return self.softmax(self.linear(rr)), hn, cndef initHiddenAndC(self):c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)return hidden, c
-
搭建GRU模型
class GRU(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(GRU, self).__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.gru = nn.GRU(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden):input1 = input1.unsqueeze(0)rr, hn = self.gru(input1, hidden)return self.softmax(self.linear(rr)), hndef initHidden(self):return torch.zeros(self.num_layers, 1, self.hidden_size)
3. 模型的实例化与训练
-
定义一些参数以及实例化模型
# 参数 input_size = len(all_letters) n_hidden = 128 output_size = n_categories input1 = lineToTensor('B').squeeze(0) hidden = c = torch.zeros(1, 1, n_hidden)rnn = RNN(input_size, n_hidden, output_size) lstm = LSTM(input_size, n_hidden, output_size) gru = GRU(input_size, n_hidden, output_size)# 测试 rnn_output, rnn_hidden = rnn(input1, hidden) lstm_output, lstm_hidden, next_c = lstm(input1, hidden, c) gru_output, gru_hidden = gru(input1, hidden)# 打印输出信息 print("rnn_output:", rnn_output) print("rnn_shape:", rnn_output.shape) print("********************************") print("lstm_output:", lstm_output) print("lstm_shape:", lstm_output.shape) print("********************************") print("gru_output:", gru_output) print("gru_shape:", gru_output.shape)
-
categoryFromOutput(output)
函数功能为从模型输出中获取最大值和最大值的索引def categoryFromOutput(output):# 从输出中获取最大值和最大值的索引top_n, top_i = output.topk(1)category_i = top_i[0].item()return all_categories[category_i], category_i
-
randomTrainingExample()
函数功能为随机选训练所需的数据def randomTrainingExample():# 随机选择一个类别category = random.choice(all_categories)# 从该类别中随机选择一个人名line = random.choice(category_lines[category])# 将人名转换为张量category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)line_tensor = lineToTensor(line)return category, line, category_tensor, line_tensor
-
构建训练函数
# 构建传统RNN训练函数 criterion = nn.NLLLoss() learning_rate = 0.005 def trainRNN(category_tensor, line_tensor):hidden = rnn.initHidden()rnn.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)# rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量loss = criterion(output.squeeze(0), category_tensor)loss.backward()# 更新参数for p in rnn.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()def trainLSTM(category_tensor, line_tensor):hidden, c = lstm.initHiddenAndC()lstm.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden, c = lstm(line_tensor[i], hidden, c)loss = criterion(output.squeeze(0), category_tensor)loss.backward()for p in lstm.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()def trainGRU(category_tensor, line_tensor):hidden = gru.initHidden()gru.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden = gru(line_tensor[i], hidden)loss = criterion(output.squeeze(0), category_tensor)loss.backward()for p in gru.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()
-
绘图的辅助函数
timeSince(since)
用于记录代码运行时间# 构建时间计算函数 def timeSince(since):now = time.time()s = now - sincem = math.floor(s / 60)s -= m * 60return "%dm %ds" % (m, s)
-
构建完整的训练函数
# 训练轮次 n_iters = 1000 # 每隔print_every打印一次信息 print_every = 50 # 每个plot_every作为一次绘图采样点 plot_every = 10 def train(train_type_fn):# 每个制图间隔损失保存列表all_losses = []# 获得开始的时间戳start = time.time()current_loss = 0for iter in range(1, n_iters + 1):category, line, category_tensor, line_tensor = randomTrainingExample()output, loss = train_type_fn(category_tensor, line_tensor)current_loss += lossif iter % print_every == 0:guess, guess_i = categoryFromOutput(output)correct = "✓" if guess == category else "✗ (%s)" % categoryprint("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))if iter % plot_every == 0:all_losses.append(current_loss / plot_every)current_loss = 0return all_losses, int(time.time() - start)
-
训练并绘图
# 训练并制作对比图 all_losses1, period1 = train(trainRNN) all_losses2, period2 = train(trainLSTM) all_losses3, period3 = train(trainGRU)plt.figure(0) plt.plot(all_losses1, label='RNN') plt.plot(all_losses2, color='red', label='LSTM') plt.plot(all_losses3, color='green', label='GRU') plt.legend(loc='upper left')plt.figure(1) x_data = ['RNN', 'LSTM', 'GRU'] y_data = [period1, period2, period3] plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)
-
为方便测试,训练轮次只设置了一千,图形跑出来看不是很清楚,以下为训练1e5次的效果
4. 构建评估函数和预测函数
-
评估函数
def evaluateRNN(line_tensor):output = Nonehidden = rnn.initHidden()for i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)return output.squeeze(0)def evaluateLSTM(line_tensor):output = Nonehidden, c = lstm.initHiddenAndC()for i in range(line_tensor.size()[0]):output, hidden, c = lstm(line_tensor[i], hidden, c)return output.squeeze(0)def evaluateGRU(line_tensor):output = Nonehidden = gru.initHidden()for i in range(line_tensor.size()[0]):output, hidden = gru(line_tensor[i], hidden)return output.squeeze(0)
-
预测函数
def predict(input_line, evaluate, n_predictions=3):print("\n> %s" % input_line)with torch.no_grad():output = evaluate(lineToTensor(input_line))topv, topi = output.topk(n_predictions, 1, True)predictions = []for i in range(n_predictions):value = topv[0][i].item()category_index = topi[0][i].item()print("(%.2f) %s" % (value, all_categories[category_index]))predictions.append([value, all_categories[category_index]])# 测试 for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:predict('Dovesky', evaluate_fn)predict('Jackson', evaluate_fn)predict('Satoshi', evaluate_fn)
-
完整代码版(方便复制来测试)
import torch from io import open import glob import os import unicodedata import string import random import time import math import torch.nn as nn import matplotlib.pyplot as plt data_path = './data/names/'all_letters = string.ascii_letters + " .,;'" def unicodeToAscii(text):"""Converts a Unicode string to an ASCII string.Args:text (str): The Unicode string to convert.Returns:str: The ASCII string."""return ''.join([unicodedata.normalize('NFKD', char)for char in textif not unicodedata.combining(char)]).encode('ascii', 'ignore').decode('ascii')def readLines(filename):lines = open(filename, encoding='utf-8').read().strip().split('\n')return [unicodeToAscii(line) for line in lines]# 构建一个人名类别与具体人名对应关系的字典 category_lines = {}# 构建所有类别的列表 all_categories = []# 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历 for filename in glob.glob(data_path + '*.txt'):category = os.path.splitext(os.path.basename(filename))[0]all_categories.append(category)lines = readLines(filename)# 将类别与人名对应关系存储到字典中category_lines[category] = linesn_categories = len(all_categories)def lineToTensor(line):# 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters# 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示tensor = torch.zeros(len(line), 1, len(all_letters))# 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1for li, letter in enumerate(line):tensor[li][0][all_letters.find(letter)] = 1return tensorclass RNN(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(RNN, self).__init__()# input_size: 输入数据的特征维度# hidden_size: RNN隐藏层的最后一个维度# output_size: RNN网络最后线性层的输出维度# num_layers: RNN网络的层数self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.rnn = nn.RNN(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden):# input: 人名分类器中的输入张量,形状是1*n_letters# hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size# 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度input1 = input1.unsqueeze(0)rr, hn = self.rnn(input1, hidden)# 将RNN中获得的结果通过线性层变换和softmax函数输出return self.softmax(self.linear(rr)), hndef initHidden(self):# 初始化隐藏层张量,全0张量,维度是3return torch.zeros(self.num_layers, 1, self.hidden_size)class LSTM(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(LSTM, self).__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden, c):# 注意:LSTM网络的输入有三个张量,不能忘记细胞状态Cinput1 = input1.unsqueeze(0)rr, (hn, cn) = self.lstm(input1, (hidden, c))return self.softmax(self.linear(rr)), hn, cndef initHiddenAndC(self):c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)return hidden, cclass GRU(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(GRU, self).__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.num_layers = num_layersself.gru = nn.GRU(input_size, hidden_size, num_layers)self.linear = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=-1)def forward(self, input1, hidden):input1 = input1.unsqueeze(0)rr, hn = self.gru(input1, hidden)return self.softmax(self.linear(rr)), hndef initHidden(self):return torch.zeros(self.num_layers, 1, self.hidden_size)# 参数 input_size = len(all_letters) n_hidden = 128 output_size = n_categories hidden = c = torch.zeros(1, 1, n_hidden)rnn = RNN(input_size, n_hidden, output_size) lstm = LSTM(input_size, n_hidden, output_size) gru = GRU(input_size, n_hidden, output_size)def categoryFromOutput(output):# 从输出中获取最大值和最大值的索引top_n, top_i = output.topk(1)category_i = top_i[0].item()return all_categories[category_i], category_i# category, category_i = categoryFromOutput(rnn_output) # print("category:", category) # print("category_i:", category_i)def randomTrainingExample():# 随机选择一个类别category = random.choice(all_categories)# 从该类别中随机选择一个人名line = random.choice(category_lines[category])# 将人名转换为张量category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)line_tensor = lineToTensor(line)return category, line, category_tensor, line_tensor# 构建传统RNN训练函数 criterion = nn.NLLLoss() learning_rate = 0.005 def trainRNN(category_tensor, line_tensor):hidden = rnn.initHidden()rnn.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)# rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量loss = criterion(output.squeeze(0), category_tensor)loss.backward()# 更新参数for p in rnn.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()def trainLSTM(category_tensor, line_tensor):hidden, c = lstm.initHiddenAndC()lstm.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden, c = lstm(line_tensor[i], hidden, c)loss = criterion(output.squeeze(0), category_tensor)loss.backward()for p in lstm.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()def trainGRU(category_tensor, line_tensor):hidden = gru.initHidden()gru.zero_grad()output = Nonefor i in range(line_tensor.size()[0]):output, hidden = gru(line_tensor[i], hidden)loss = criterion(output.squeeze(0), category_tensor)loss.backward()for p in gru.parameters():p.data.add_(-learning_rate, p.grad.data)return output, loss.item()# 构建时间计算函数 def timeSince(since):now = time.time()s = now - sincem = math.floor(s / 60)s -= m * 60return "%dm %ds" % (m, s)# 完整的训练函数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_iters = 1000 print_every = 50 plot_every = 10 def train(train_type_fn):# 每个制图间隔损失保存列表all_losses = []# 获得开始的时间戳start = time.time()current_loss = 0for iter in range(1, n_iters + 1):category, line, category_tensor, line_tensor = randomTrainingExample()output, loss = train_type_fn(category_tensor, line_tensor)current_loss += lossif iter % print_every == 0:guess, guess_i = categoryFromOutput(output)correct = "✓" if guess == category else "✗ (%s)" % categoryprint("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))if iter % plot_every == 0:all_losses.append(current_loss / plot_every)current_loss = 0return all_losses, int(time.time() - start)# 训练并制作对比图 all_losses1, period1 = train(trainRNN) all_losses2, period2 = train(trainLSTM) all_losses3, period3 = train(trainGRU)plt.figure(0) plt.plot(all_losses1, label='RNN') plt.plot(all_losses2, color='red', label='LSTM') plt.plot(all_losses3, color='green', label='GRU') plt.legend(loc='upper left')plt.figure(1) x_data = ['RNN', 'LSTM', 'GRU'] y_data = [period1, period2, period3] plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)# 构建评估函数 def evaluateRNN(line_tensor):output = Nonehidden = rnn.initHidden()for i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)return output.squeeze(0)def evaluateLSTM(line_tensor):output = Nonehidden, c = lstm.initHiddenAndC()for i in range(line_tensor.size()[0]):output, hidden, c = lstm(line_tensor[i], hidden, c)return output.squeeze(0)def evaluateGRU(line_tensor):output = Nonehidden = gru.initHidden()for i in range(line_tensor.size()[0]):output, hidden = gru(line_tensor[i], hidden)return output.squeeze(0)# 构建预测函数 def predict(input_line, evaluate, n_predictions=3):print("\n> %s" % input_line)with torch.no_grad():output = evaluate(lineToTensor(input_line))topv, topi = output.topk(n_predictions, 1, True)predictions = []for i in range(n_predictions):value = topv[0][i].item()category_index = topi[0][i].item()print("(%.2f) %s" % (value, all_categories[category_index]))predictions.append([value, all_categories[category_index]])# 调用试试 for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:predict('Dovesky', evaluate_fn)predict('Jackson', evaluate_fn)predict('Satoshi', evaluate_fn)
这篇关于传统RNN网络及其案例--人名分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!