pyplot填充颜色

2024-05-26 14:58
文章标签 填充 颜色 pyplot

本文主要是介绍pyplot填充颜色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import numpy as np
import matplotlib.pyplot as plt
a=np.random.randint(10,100,20)
b=a.shape[0]
co=['r','g']
plt.bar(range(b),a,color=[co[0] if i<40 else co[i] for i in a],alpha=0.6)

在这里插入图片描述

这篇关于pyplot填充颜色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004793

相关文章

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

SpringBoot自定义注解如何解决公共字段填充问题

《SpringBoot自定义注解如何解决公共字段填充问题》本文介绍了在系统开发中,如何使用AOP切面编程实现公共字段自动填充的功能,从而简化代码,通过自定义注解和切面类,可以统一处理创建时间和修改时间... 目录1.1 问题分析1.2 实现思路1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

基于Java实现模板填充Word

《基于Java实现模板填充Word》这篇文章主要为大家详细介绍了如何用Java实现按产品经理提供的Word模板填充数据,并以word或pdf形式导出,有需要的小伙伴可以参考一下... Java实现按模板填充wor编程d本文讲解的需求是:我们需要把数据库中的某些数据按照 产品经理提供的 word模板,把数据

渐变颜色填充

GradientFill函数可以对特定的矩形区域或者三角形区域进行渐变颜色的填充。我们先来看看GradientFill函数到底长得什么样子,帅不帅。 [cpp]  view plain copy print ? BOOL GradientFill(     _In_  HDC hdc,     _In_  PTRIVERTEX pVertex,     _In_  ULONG

【Godot4.3】多边形的斜线填充效果基础实现

概述 图案(Pattern)填充是一个非常常见的效果。其中又以斜线填充最为简单。本篇就探讨在Godot4.3中如何使用Geometry2D和CanvasItem的绘图函数实现斜线填充效果。 基础思路 Geometry2D类提供了多边形和多边形以及多边形与折线的布尔运算。按照自然的思路,多边形的斜线填充应该属于“多边形与折线的布尔运算”范畴。 第一个问题是如何获得斜线,这条斜线应该满足什么样

【虚拟机/服务器】非图形化界面下修改Shell中颜色的设置

1、首先 cd ~ && ll 可以看到如下图所示 2、输入 sudo vim .bashrc 进入 .bashrc 并通过 /PS1 迅速从上往下定位第一个PS1 3、输入 i 进入插入模式后修改 else 下面的配置如下 说明:\e[1;32;40m] 其中1表示高亮显示,32表示字体颜色是绿色,40表示背景色为黑色 4、输入 esc 退出编辑模式到命令模式,再输入

Excel查询颜色RGB值

1.选中单元格,点右键,设置单元格格式-填充-其他颜色-自定义,下面显示的就是该单元格颜色的RGB值 2.与十六进制换算: https://www.sioe.cn/yingyong/yanse-rgb-16/

数据处理与数据填充在Pandas中的应用

在数据分析和机器学习项目中,数据处理是至关重要的一步。Pandas作为Python中用于数据分析和操作的一个强大库,提供了丰富的功能来处理和清洗数据。本文将深入探讨Pandas在数据处理,特别是数据填充方面的应用。 在实际的数据集中,缺失值(Missing Values)或异常值(Outliers)是常见的问题。这些不完整或错误的数据如果不加以处理,会严重影响数据分析的准确性和机器学习模型的性能