Atlas 200I DK A2安装MindSpore Ascend版本

2024-05-26 09:52

本文主要是介绍Atlas 200I DK A2安装MindSpore Ascend版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、参考资料

mindspore快速安装

二、重要说明

经过博主多次尝试多个版本,Atlas 200I DK A2无法安装MindSpore Ascend版本

也有其他博主测试,也未尝成功,例如:【MindSpore易点通·漫游世界】在Atlas 200I DK A2 (CANN6.2.RC2)上安装MindSpore Ascend版的踩坑记录

mindspore 1.5.2 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.6.2 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.7.1 报错无法运行 (./tensor_add_sample: error while loading shared libraries: libhccl.so: cannot open shared object file: No such file or directory)

mindspore 1.8.1 报错无法运行(./tensor_add_sample: error while loading shared libraries: libhccl.so: cannot open shared object file: No such file or directory)

mindspore 1.9.0 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.10.1 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 2.0.0 报错无法运行(Unsupported device target Ascend)

mindspore 2.1.0 报错无法运行(Unsupported device target Ascend)

三、准备工作

1. 测试环境

设备型号:Atlas 200I DK A2
Operating System + Version: Ubuntu 22.04 LTS
CPU Type: 4核TAISHANV200M处理器
AI CPU number: 0
control CPU number: 4
RAM: 4GB 
miscroSD: 128GB
CANN Vertion: 7.0.RC1
HwHiAiUser@davinci-mini:~$ npu-smi info -t aicpu-config -i 0 -c 0Current AI CPU number          : 0Current control CPU number     : 4Number of AI CPUs set          : 0Number of control CPUs set     : 4

2. MindSpore与CANN版本对齐

通过 链接 查询MindSpore与Ascend配套软件包的版本配套关系。

在这里插入图片描述

3. 安装mindspore_ascend

详细过程,请参考:pip方式安装MindSpore Ascend 310版本

4. 验证是否安装成功

4.1 方法一

import mindspore as ms# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')
ms.set_context(device_target="Ascend")
ms.set_context(device_id=0)
mindspore.run_check()

如果输出以下结果,则说明mindspore_ascend安装成功。

MindSpore version: 版本号
The result of multiplication calculation is correct, MindSpore has been installed on platform [Ascend] successfully!

4.2 方法二

import numpy as np
import mindspore as ms
import mindspore.ops as opsms.set_context(device_target="Ascend")
x = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))

如果输出以下结果,则说明mindspore_ascend安装成功。

[[[[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]]]]

4.3 方法三

ascend310_single_op_sample

这是一个[1, 2, 3, 4][2, 3, 4, 5]相加的简单样例,代码工程目录结构如下:

└─ascend310_single_op_sample├── CMakeLists.txt                    // 编译脚本├── README.md                         // 使用说明├── main.cc                           // 主函数└── tensor_add.mindir                 // MindIR模型文件
unzip ascend310_single_op_sample.zip
cd ascend310_single_op_sample# 编译
cmake . -DMINDSPORE_PATH=`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`
make# 执行
./tensor_add_sample

如果输出以下结果,则说明mindspore_ascend安装成功。

3
5
7
9

四、测试代码

1. 示例一

用MindSpore搭建模型,并进行测试。

"""
MindSpore implementation of `MobileNetV1`.
Refer to MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
"""
import timefrom mindspore import nn, Tensor, ops
import mindspore.common.initializer as init
import mindspore as ms
from PIL import Image
from mindcv.data import create_transforms
import numpy as npdef depthwise_separable_conv(inp: int, oup: int, stride: int) -> nn.SequentialCell:return nn.SequentialCell(# dwnn.Conv2d(inp, inp, 3, stride, pad_mode="pad", padding=1, group=inp, has_bias=False),nn.BatchNorm2d(inp),nn.ReLU(),# pwnn.Conv2d(inp, oup, 1, 1, pad_mode="pad", padding=0, has_bias=False),nn.BatchNorm2d(oup),nn.ReLU(),)class MobileNetV1(nn.Cell):r"""MobileNetV1 model class, based on`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_Args:alpha: scale factor of model width. Default: 1.in_channels: number the channels of the input. Default: 3.num_classes: number of classification classes. Default: 1000."""def __init__(self,alpha: float = 1.,in_channels: int = 3,num_classes: int = 1000) -> None:super().__init__()input_channels = int(32 * alpha)# Setting of depth-wise separable conv# c: number of output channel# s: stride of depth-wise convblock_setting = [# c, s[64, 1],[128, 2],[128, 1],[256, 2],[256, 1],[512, 2],[512, 1],[512, 1],[512, 1],[512, 1],[512, 1],[1024, 2],[1024, 1],]features = [nn.Conv2d(in_channels, input_channels, 3, 2, pad_mode="pad", padding=1, has_bias=False),nn.BatchNorm2d(input_channels),nn.ReLU()]for c, s in block_setting:output_channel = int(c * alpha)features.append(depthwise_separable_conv(input_channels, output_channel, s))input_channels = output_channelself.features = nn.SequentialCell(features)# self.pool = GlobalAvgPooling()self.pool = nn.AdaptiveAvgPool2d(output_size=(1, 1))self.classifier = nn.Dense(input_channels, num_classes)self._initialize_weights()def _initialize_weights(self) -> None:"""Initialize weights for cells."""for _, cell in self.cells_and_names():if isinstance(cell, nn.Conv2d):cell.weight.set_data(init.initializer(init.XavierUniform(),cell.weight.shape,cell.weight.dtype))if isinstance(cell, nn.Dense):cell.weight.set_data(init.initializer(init.TruncatedNormal(),cell.weight.shape,cell.weight.dtype))def forward_features(self, x: Tensor) -> Tensor:x = self.features(x)return xdef forward_head(self, x: Tensor) -> Tensor:squeeze = ops.Squeeze(0)x = squeeze(x)x = self.pool(x)squeeze = ops.Squeeze(2)x = squeeze(x)x = x.transpose()x = self.classifier(x)return xdef construct(self, x: Tensor) -> Tensor:x = self.forward_features(x)x = self.forward_head(x)return xdef mobilenet_v1_100_224(pretrained: bool = False, num_classes: int = 1000, in_channels=3, **kwargs) -> MobileNetV1:"""Get MobileNetV1 model without width scaling.Refer to the base class `models.MobileNetV1` for more details."""model = MobileNetV1(alpha=1.0, in_channels=in_channels, num_classes=num_classes, **kwargs)return modelif __name__ == '__main__':# ms.set_context(device_target='GPU')# ms.set_context(device_target='CPU')ms.set_context(device_target="Ascend")ms.set_context(device_id=0)ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = mobilenet_v1_100_224()for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")# print(network)

2. 示例二

调用 mindcv库中的预训练模型进行测试。

"""MindSpore Inference Script
"""import numpy as np
from PIL import Imageimport mindspore as msfrom mindcv.data import create_transforms
from mindcv.models import create_model
import time# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')ms.set_context(device_target='Ascend')
ms.set_context(device_id=0)
ms.set_context(max_device_memory="3.5GB")def main():ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = create_model(model_name="mobilenet_v1_100",  # mobilenet_v1_100_224pretrained=False,)network.set_train(False)for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")if __name__ == "__main__":main()

五、FAQ

Q:RuntimeError: Load op info form json config failed, version: Ascend310B4

[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.302.942 [mindspore/run_check/_check_version.py:375] MindSpore version 2.1.1 and "te" wheel package version 7.0 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.305.619 [mindspore/run_check/_check_version.py:382] MindSpore version 2.1.1 and "hccl" wheel package version 7.0 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.305.849 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 3
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:29.307.139 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 2
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:30.308.249 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 1
[ERROR] KERNEL(230369,e7ffaf56f120,python):2024-05-25-17:29:35.761.869 [mindspore/ccsrc/kernel/oplib/op_info_utils.cc:172] LoadOpInfoJson] Get op info json suffix path failed, soc_version: Ascend310B4
[ERROR] KERNEL(230369,e7ffaf56f120,python):2024-05-25-17:29:35.762.199 [mindspore/ccsrc/kernel/oplib/op_info_utils.cc:111] GenerateOpInfos] Load op info json failed, version: Ascend310B4
Traceback (most recent call last):File "/root/Downloads/mindspore_ascend_demo.py", line 8, in <module>print(ops.add(x, y))File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/_stub_tensor.py", line 49, in funreturn method(*arg, **kwargs)File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/tensor.py", line 486, in __str__return str(self.asnumpy())File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/tensor.py", line 924, in asnumpyreturn Tensor_.asnumpy(self)
RuntimeError: Load op info form json config failed, version: Ascend310B4----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_kernel_runtime.cc:431 Init[ERROR] PIPELINE(230369,e7ffedd76020,python):2024-05-25-17:29:35.824.442 [mindspore/ccsrc/pipeline/jit/pipeline.cc:2311] ClearResAtexit] Check exception before process exit: Load op info form json config failed, version: Ascend310B4----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_kernel_runtime.cc:431 Init

mindspore_ascend 2.1.1 测试失败。

Q:RuntimeError: The device address type is wrong: type name in address:CPU, type name in context:Ascend

RuntimeError: The device address type is wrong: type name in address:CPU, type name in context:Ascend----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/hardware/ge_device_res_manager.cc:72 AllocateMemory

mindspore_ascend 2.2.0 测试失败。

这篇关于Atlas 200I DK A2安装MindSpore Ascend版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004132

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

java中不同版本JSONObject区别小结

《java中不同版本JSONObject区别小结》本文主要介绍了java中不同版本JSONObject区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1. FastjsON2. Jackson3. Gson4. org.json6. 总结在Jav

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq