光速入门python的OpenCV

2024-05-26 09:12
文章标签 python 入门 opencv 光速

本文主要是介绍光速入门python的OpenCV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

欢迎来到我的博客

个人主页:北岭敲键盘的荒漠猫-CSDN博客

 本文整理python的OpenCV模块的关键知识点

争取用最短的时间入门OpenCV

并且做到笔记功能直接复制使用

OpenCV简介

不浪费时间的介绍:

就是类似于ps操作图片。

至于为什么不直接用ps,因为只有程序能完成ps的操作,这样才能完全自动化2小时不间断的执行一些程序,总不能执行到一定地方要等你人为的在ps中做好图片再来执行程序吧。

功能点罗列:

画图,图片高斯模糊,腐蚀膨胀等处理,开启摄像头。

最基本的使用

导入模块:import cv2
方法作用
cv2.getVersionString()返回OpenCV的版本
cv2.imread(文件地址,图片灰彩类型)

读取文件,用于实例化对象

灰彩类型:(可以不写)

cv2.IMREAD_COLOR读入彩色图像cv2.IMREAD_GRAYSCALE读入灰色图像

对象.shape返回图片的大小(像素)
cv2.imshow(窗口名,图片对象)返回个窗口用于展示这个图片
cv2.waitKey(自动关闭时间)

窗口不自动关闭,知道按下任意键或者到规定时间(时间为微秒)

返回他按得键的代号数字

到时间返回-1

cv2.imwrite(保存路径和文件名,保存的图片)保存编辑的图片

注意:

这个库不支持任何中文!!!!!

不管是图片文件命名还是窗口等

一律别用中文!!!!!!!

(至少我的版本不支持任何中文)

案例演示:

import cv2#导入库
print(cv2.getVersionString())#返回版本号
image=cv2.imread("konglong.jpg")#导入图片,实例化
print(image.shape)#返回图片的大小和通道cv2.imshow("阿萨德",image)#展示图片
cv2.waitKey(1000)#设置暂停
cv2.imwrite("okok.jpg",image)#保存图片

结果:

打印信息

保存okok图片

展示图片(代码中用中文做窗口所以会乱码)

 视频的打开方式

我们视频有两种:摄像头,视频文件

用到的函数:

读取视频或摄像头:cv2.VideoCapture(视频或者摄像头的指针)
返回视频读取的照片:cap.read()

开启摄像头

思路:原理就是对这摄像头一遍遍截图。然后我们不断的刷新显示的图片。

代码如下:

import cv2#导入库
cap=cv2.VideoCapture(0)#读取摄像头
while True:#循环valu,video=cap.read()#读取摄像头内容show=cv2.imshow("video",video)#展示摄像头key=cv2.waitKey(1)#设置等待0.001秒刷新一次print(key)if key!=-1:#如果不是到时间刷新的视频就退出视频break

结果如下:

 按下别的键就关闭了。(字母有时候不行,数字或者特殊按键相对靠谱点)

视频打开方式

代码:

import cv2#导入库
cap=cv2.VideoCapture("bingdu.mp4")
while True:valu,video=cap.read()show=cv2.imshow("video",video)key=cv2.waitKey(1)print(key)if key!=-1:break

基本一样不截图了

灰度图获取与处理

介绍:OpenCV储存图片实际上是储存三原色的三张图片,最后整合在一起。采用bgr图像。

灰度加权平均:

cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

展示隔色彩图像:

cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])

用法演示:(图片太大不展示效果了)

import cv2
image=cv2.imread("konglong.jpg")
cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",gray)
cv2.waitKey()

裁剪图像

crop=image[y轴开始裁剪位置:结束位置,x轴开始裁剪位置:结束位置]

水平为x,垂直为y

案例演示:

import cv2
image=cv2.imread("konglong.jpg")
print(image.shape)
y,h,x,w=100,300,100,600
crop=image[y:h,x:w]
cv2.imshow("crop",crop)
cv2.waitKey()

图形绘制

可用于标记识别的物品

(注意,所有的粗细参数输入负数后就是填充图像)

绘制直线

cv2.line(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.line(image,(0,0),(700,600),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

效果演示:

绘制方形

cv2.rectangle(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.rectangle(image,(309,310),(344,352),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

绘制圆形

cv2.circle(image,原点坐标,半径,颜色,粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.circle(image,(329,329),30,(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

 椭圆绘制

cv2.ellipse(图片, 中心点坐标, 横纵轴长度(元组), 旋转角度, 起始角度, 结束角度, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.ellipse(image, (256, 256), (100, 50), 60, 0, 360, (0, 255, 0), -1)
cv2.imshow("image",image)
cv2.waitKey()

绘制文字

cv2.putText(图片, 文字, 位置, 字体, 文字大小, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.putText(image, "how cool am i!", (250, 350), cv2.FONT_HERSHEY_SIMPLEX, 2, (65,54,87), 2)
cv2.imshow("image",image)
cv2.waitKey()

噪点处理

噪点描述:拍摄时信号传输收到干扰产生的杂色,如下:

噪点处理,其实就是让他变模糊,模糊之后边界就会不明显。但是也会影响一定的画面。

所以一般情况下,是对图像的局部噪点严重的区域进行区域内的噪点处理。

注意下面的核必须是奇数。

高斯模糊

cv2.GaussianBlur(图像,高斯核,sigmaX,sigmaY,边界样式)
x与y差越大越模糊,0的话就是自行计算
实际上一般可以用下面形式进行使用
cv2.GaussianBlur(image,(5,5),0)

中值滤过(像素排序取中值平滑处理)

cv2.medianBlur(图片,核)

案例演示

import cv2
image=cv2.imread("zaodian.jpeg")
cv2.imshow("image",image)
gauss=cv2.GaussianBlur(image,(5,5),0,11)
cv2.imshow("gauss",gauss)
median=cv2.medianBlur(image,5)
cv2.imshow("median",median)
cv2.waitKey()

效果演示

图片特征提取

(但是OpenCV提取图像特征的水平有限,如果需要特别的精准可以尝试别的库)

提取图片的特征,比如说转角,边缘,纹理啥的。

提取思路:先把图像给转化为灰度图,然后在灰度图中匹配转角这类的特征。

函数:

cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY) #灰度处理
cv2.goodFeaturesToTrack(图片,最大特征数,点的质量,特征最小的距离)
.ravel()#点的坐标

案例演示

import cv2
image=cv2.imread("okok.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
corners=cv2.goodFeaturesToTrack(gray,500,0.1,10)
for corner in corners:x,y=corner.ravel()cv2.circle(image,(int(x),int(y)),2,(255,0,255),-1)
cv2.imshow("corners",image)
cv2.waitKey()

其实这些特征提取也不是特别的精准,看图中的特征点也能看出来,这些特征点也不足以准确的识别这个画面。

图片匹配

原理:

也是把指定的图片转化为灰度图,然后找特征点,之后在指定的图片中匹配有没有相似的特征点。

缺点:

对图片的大小敏感。也就是说我们给的图片距离镜头20m,但是在指定的图片中,这个图片在镜头50m的地方,就会因为大小不同而匹配不到。

解决思路:

可以改变图像的大小进行多次匹配,或者减少匹配的精度要求(误判多)。

(用到了numpy模块)

函数

灰度处理:cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY)
匹配图像:cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)
获取坐标:numpy.where(match >= 匹配相似度)

案例演示

(我写的这个识别度不是很高,不过能识别基本的功能,有点人工智障)

调用摄像头实时识别书本上的java。

代码案例

import cv2
import numpy as np
image=cv2.imread("java.jpg")
video=cv2.VideoCapture(0)
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
x1,y1=617,608
x2,y2=967,734
target=gray[y1:y2,x1:x2]
cv2.imshow("okk",target)
h,w=target.shape[0:2]
print("{},{}".format(h,w))
a=1
while True:#循环valu,video1=video.read()#读取摄像头内容gray_video=cv2.cvtColor(video1,cv2.COLOR_BGR2GRAY)if a==1:a=2cv2.imshow("okkk",gray_video)match = cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)place = np.where(match >= 0.9)print(place)for p in zip(*place[::-1]):x_1, y_1 = p[0], p[1]x_2, y_2 = x_1 + w, y_1 + hprint(x_1,x_2)cv2.rectangle(video1,(x_1, y_2),(x_2, y_2),(156, 124, 21), 1)show=cv2.imshow("video",video1)#展示摄像头key=cv2.waitKey(1)#设置等待0.001秒刷新一次if key!=-1:#如果不是到时间刷新的视频就退出视频break

效果演示

嗯人工智障,识别条件特别苛刻。

不过也算是能够完成实时识别的功能了。

图像梯度算法

简介一下图像梯度:

图像梯度就像地理地图的等高线一样。

给我们分辨一个区域的图像像素变化的强度,如果他变化强度比较大,那么他大概率是图形的边缘。可以利用图像的梯度来分辨图像中的不同的物体。

拉普拉斯算子

作用:利用梯度的方法检测图像边缘,轮廓以及纹理。

函数:

常用写法:cv2.Laplacian(图片,cv2.CV_64F)
完整写法:cv2.Laplacian(image, dest, ddepth, ksize, scale, delta, borderType)
image是输入图像,dest是输出图像,ddepth是输出图像的深度,ksize是卷积核的大小,scale是拉普拉斯算子的系数

案例演示:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
laplacian=cv2.Laplacian(gray,cv2.CV_64F)
cv2.imshow("yuantu",image)
cv2.imshow("suanfa",laplacian)
cv2.waitKey()

效果演示:

 canny算子

函数:

cv2.Canny(gray,边缘1,边缘2)

原理:

像素变化强度大于边缘2被判定为是边界,小于边界1被判定为不是边界。在两者之间的区域根据已经判断的区域进行判断。

源码如下:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
canny=cv2.Canny(gray,100,200)
canny2=cv2.Canny(gray,50,100)
cv2.imshow("yuantu",image)
cv2.imshow("canny",canny)
cv2.imshow("canny2",canny2)
cv2.waitKey()

效果演示:

好处就是自己能规定他判断的严格程度。

阈值算法(二值化)

普通算法

描述:众所周知,我们世界的颜色并不是绝对的黑白,我们由黑白之间可以配出很多种灰色。

我们就可以用这个原理来把这些灰色绝对化。满足某个值的就变成黑色,不满足的就是白色。

这样就可以识别一些黑暗环境中的文字或者物品。

(但也别指望太准,要是拿个你自己都分辨不出来的图片,用这个也不容易。。。)

函数

cv2.threshold(图片,阈值,最大灰度,处理方法)
本案例用的函数:cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
(因为这张照片环境明堂堂的。。。)

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret,binary=cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
cv2.imshow("binary",binary)
cv2.waitKey()

效果演示

分区二值化算法

OpenCV有内置的分区二值化算法,自动计算这个小区域的阈值,并设定合适的阈值。

函数

函数:(案例)
cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)该函数有以下参数:src: 要二值化的原始图像。maxval: 阈值的最大值。adaptiveMethod: 用于计算阈值的方法。有两个选项可供选择:cv2.ADAPTIVE_THRESH_MEAN_C和cv2.ADAPTIVE_THRESH_GAUSSIAN_C。推荐使用默认的cv2.ADAPTIVE_THRESH_GAUSSIAN_C。thresholdType: 阈值类型。可以是cv2.THRESH_BINARY或cv2.THRESH_BINARY_INV。推荐使用默认的cv2.THRESH_BINARY。blockSize: 每个局部区域的大小,用来计算局部阈值。C: 从平均值或加权平均值中减去的常数。该参数在计算局部阈值时起到调整阈值的作用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
binary_adaptive=cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)
cv2.imshow("binary",binary_adaptive)
cv2.waitKey()

结果演示

可以看到,明显的比自己写的那个好用。

大金算法

算法原理:找两个最大的值,然后取两个值的中心。让黑白差异最大化。

函数

cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

好处

完全不用咱们自己设置阈值,他自己就可以设置的明明白白的。

但是也有缺点,不如自己设置的完美,有时候可能不是很好用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("binary",binary_otsu)
cv2.waitKey()

效果演示

腐蚀与膨胀

腐蚀:就是给图像变瘦一点(减少白色)

膨胀:相反,给图像变胖一点(增加白色)

作用:可以处理图像边缘,放大或者缩小图像的细节。

函数

他们都需要创建一个核

np.ones((5, 5), np.uint8)

膨胀与腐蚀

cv2.erode(图像, kernel)  # 腐蚀
cv2.dilate(图像, kernel)  # 膨胀

案例演示:

import cv2
import numpy as np
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel = np.ones((5, 5), np.uint8)
erosion = cv2.erode(binary_otsu, kernel)  # 腐蚀
dilate = cv2.dilate(binary_otsu, kernel)  # 膨胀
cv2.imshow("binary",binary_otsu)
cv2.imshow("er",erosion)
cv2.imshow("di",dilate)
cv2.waitKey()

效果演示:

腐蚀

膨胀

 这里看到,明明是腐蚀但是感觉像是做出膨胀的效果,这是因为这个是腐蚀白色。所以对于黑色来说是膨胀了。

总结

OK,这些就是OpenCV的基础了。

他还有很多深入的算法,需要自己挖掘。

掌握了这些就能实现一些基本的功能了。

这篇关于光速入门python的OpenCV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004045

相关文章

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取