点云处理中阶 Octree模块

2024-05-26 00:04

本文主要是介绍点云处理中阶 Octree模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是Octree

      八叉树(Octree)是一种用于描述三维空间的树状数据结构。八叉树的每个节点表示一个正方体的体积元素,每个节点有八个子节点,这八个子节点所表示的体积元素加在一起就等于父节点的体积。一般中心点作为节点的分叉中心。且每个节点可以继续分割,直到满足某个条件(如达到最大深度或最小点数)。这种结构特别适合于稀疏点云数据的处理,能够高效地进行空间查询和操作。

实现八叉树的原理 

  (1). 设定最大递归深度。

  (2). 找出场景的最大尺寸,并以此尺寸建立第一个立方体。

  (3). 依序将单位元元素丢入能被包含且没有子节点的立方体。

  (4). 若没达到最大递归深度,就进行细分八等份,再将该立方体所装的单位元元素全部分担给八个子立方体。

  (5). 若发现子立方体所分配到的单位元元素数量不为零且跟父立方体是一样的,则该子立方体停止细分,因为跟据空间分割理论,细分的空间所得到的分配必定较少,若是一样数目,则再怎么切数目还是一样,会造成无穷切割的情形。

  (6). 重复3,直到达到最大递归深度。

二、八叉树应用

1、点云压缩

      点云由巨大的数据集组成,这些数据集描述了三维点,并与诸如距离、颜色、法线等附加信息相关联。此外,它们可以以很高的速率创建,因此占用大量的内存资源。一旦点云必须在速率有限的通信信道上存储或传输,压缩这类数据的方法就变得非常有趣了。

      点云库提供点云压缩功能。它允许编码所有类型的点云,包括无序的点云,其特征是不存在的点引用,不同的点大小,分辨率,密度和/或点顺序。

      此外,底层八叉树数据结构能够有效地合并来自多个来源的点云数据。

      以下示例演示如何有效地压缩单点云以及点云流。

压缩单点云

  1. 几何压缩

    • Octree编码:将空间分割成八个子区域,递归进行,直到每个节点包含的点数少于某个阈值。使用八叉树结构可以有效减少存储需求。
    • KD树编码:通过平衡树结构将点云分割,并按层次顺序存储,可以较好地压缩数据。
  2. 基于变换的压缩

    • 主成分分析 (PCA):对点云数据进行主成分分析,将点云数据投影到主成分上,减少维度,从而达到压缩的目的。
    • 离散余弦变换 (DCT)小波变换:将点云数据转变到频域,利用能量集中在低频部分的特性,舍弃高频部分,实现压缩。
  3. 点位置编码

    • 量化:将点的坐标值进行量化,可以在一定程度上减少数据量。
    • 预测编码:使用点的邻域信息预测当前点的位置,仅存储预测误差,从而减少存储量。

压缩点云流

  1. 时间冗余压缩

    • 帧间差分编码:仅存储相邻帧之间的差异,而不是每一帧的完整数据。可以大大减少数据量。
    • 运动估计和补偿:通过估计点云流中的运动矢量,只存储运动矢量和补偿信息。
  2. 基于模型的压缩

    • 动态几何模型:利用物体的运动模型(如刚体运动模型、骨架动画等)来预测点的位置,只存储模型参数。
    • 稀疏表示:使用稀疏矩阵或张量表示点云流,存储非零元素及其索引。
  3. 空间和时间联合压缩

    • 四维(3D空间+时间)Octree编码:将时间维度加入Octree结构,实现空间和时间的联合压缩。
    • 时空小波变换:对点云流进行时空小波变换,利用点云流在时空域的稀疏性进行压缩。
  4. 机器学习方法

    • 自编码器:使用神经网络的自编码器结构学习点云数据的低维表示,从而实现压缩。
    • 生成对抗网络(GANs):利用GAN生成逼真的点云数据,可以仅存储生成器的模型参数,而不是所有点数据。

示例一(进行压缩和解压缩)

#include <iostream>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/octree_pointcloud_compression.h>int main(int argc, char** argv) {// 创建一个点云对象pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGBA>());pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZRGBA>());// 生成一些示例点云数据cloud->width = 100;cloud->height = 1;cloud->points.resize(cloud->width * cloud->height);for (size_t i = 0; i < cloud->points.size(); ++i) {cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);cloud->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);cloud->points[i].r = rand() % 256;cloud->points[i].g = rand() % 256;cloud->points[i].b = rand() % 256;cloud->points[i].a = 255;}// 初始化点云压缩和解压缩对象pcl::io::compression_Profiles_e compressionProfile = pcl::io::HIGH_RES_ONLINE_COMPRESSION_WITHOUT_COLOR;bool showStatistics = true;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> PointCloudEncoder(compressionProfile, showStatistics);pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> PointCloudDecoder;// 压缩点云std::stringstream compressedData;PointCloudEncoder.encodePointCloud(cloud, compressedData);// 解压缩点云PointCloudDecoder.decodePointCloud(compressedData, cloudOut);// 打印压缩和解压缩后的点云数据std::cout << "Original Point Cloud: " << std::endl;for (size_t i = 0; i < cloud->points.size(); ++i) {std::cout << "    " << cloud->points[i] << std::endl;}std::cout << "Decompressed Point Cloud: " << std::endl;for (size_t i = 0; i < cloudOut->points.size(); ++i) {std::cout << "    " << cloudOut->points[i] << std::endl;}return 0;
}

示例二(OpenNI兼容设备)

下面的代码为OpenNI兼容设备实例化一个新的采样器,并且启动循环回调接口,每从设备获取一帧数据就回调函数一次,,这里的回调函数就是实现数据压缩和可视化解压缩结果。

出处:PCL学习八叉树 - Being_young - 博客园 (cnblogs.com)

#include <pcl/point_cloud.h>                         // 点云类型
#include <pcl/point_types.h>                          //点数据类型
#include <pcl/io/openni_grabber.h>                    //点云获取接口类
#include <pcl/visualization/cloud_viewer.h>            //点云可视化类#include <pcl/compression/octree_pointcloud_compression.h>   //点云压缩类#include <stdio.h>
#include <sstream>
#include <stdlib.h>#ifdef WIN32
# define sleep(x) Sleep((x)*1000)
#endifclass SimpleOpenNIViewer
{
public:SimpleOpenNIViewer () :viewer (" Point Cloud Compression Example"){}
/************************************************************************************************在OpenNIGrabber采集循环执行的回调函数cloud_cb_中,首先把获取的点云压缩到stringstream缓冲区,下一步就是解压缩,它对压缩了的二进制数据进行解码,存储在新的点云中解码了点云被发送到点云可视化对象中进行实时可视化
*************************************************************************************************/void  cloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &cloud){if (!viewer.wasStopped ()){// 存储压缩点云的字节流对象std::stringstream compressedData;// 存储输出点云pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZRGBA> ());// 压缩点云PointCloudEncoder->encodePointCloud (cloud, compressedData);// 解压缩点云PointCloudDecoder->decodePointCloud (compressedData, cloudOut);// 可视化解压缩的点云viewer.showCloud (cloudOut);}}
/**************************************************************************************************************在函数中创建PointCloudCompression类的对象来编码和解码,这些对象把压缩配置文件作为配置压缩算法的参数所提供的压缩配置文件为OpenNI兼容设备采集到的点云预先确定的通用参数集,本例中使用MED_RES_ONLINE_COMPRESSION_WITH_COLOR配置参数集,用于快速在线的压缩,压缩配置方法可以在文件/io/include/pcl/compression/compression_profiles.h中找到,在PointCloudCompression构造函数中使用MANUAL——CONFIGURATION属性就可以手动的配置压缩算法的全部参数
******************************************************************************************************************/void run (){bool showStatistics = true;  //设置在标准设备上输出打印出压缩结果信息// 压缩选项详情在: /io/include/pcl/compression/compression_profiles.hpcl::io::compression_Profiles_e compressionProfile = pcl::io::MED_RES_ONLINE_COMPRESSION_WITH_COLOR;// 初始化压缩和解压缩对象  其中压缩对象需要设定压缩参数选项,解压缩按照数据源自行判断PointCloudEncoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> (compressionProfile, showStatistics);PointCloudDecoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> ();/***********************************************************************************************************下面的代码为OpenNI兼容设备实例化一个新的采样器,并且启动循环回调接口,每从设备获取一帧数据就回调函数一次,,这里的回调函数就是实现数据压缩和可视化解压缩结果。************************************************************************************************************///创建从OpenNI获取点云的抓取对象pcl::Grabber* interface = new pcl::OpenNIGrabber ();// 建立回调函数boost::function<void(const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f = boost::bind (&SimpleOpenNIViewer::cloud_cb_, this, _1);//建立回调函数和回调信息的绑定boost::signals2::connection c = interface->registerCallback (f);// 开始接受点云的数据流interface->start ();while (!viewer.wasStopped ()){sleep (1);}interface->stop ();// 删除压缩与解压缩的实例delete (PointCloudEncoder);delete (PointCloudDecoder);}pcl::visualization::CloudViewer viewer;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudEncoder;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudDecoder;};int
main (int argc, char **argv)
{SimpleOpenNIViewer v;  //创建一个新的SimpleOpenNIViewer  实例并调用他的run方法v.run ();return (0);
}

示例三(官方demo)

#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>#include <pcl/compression/octree_pointcloud_compression.h>#include <stdio.h>
#include <sstream>
#include <stdlib.h>#ifdef WIN32
# define sleep(x) Sleep((x)*1000)
#endifclass SimpleOpenNIViewer
{
public:SimpleOpenNIViewer () :viewer (" Point Cloud Compression Example"){}voidcloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &cloud){if (!viewer.wasStopped ()){// stringstream to store compressed point cloudstd::stringstream compressedData;// output pointcloudpcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZRGBA> ());// compress point cloudPointCloudEncoder->encodePointCloud (cloud, compressedData);// decompress point cloudPointCloudDecoder->decodePointCloud (compressedData, cloudOut);// show decompressed point cloudviewer.showCloud (cloudOut);}}voidrun (){bool showStatistics = true;// for a full list of profiles see: /io/include/pcl/compression/compression_profiles.hpcl::io::compression_Profiles_e compressionProfile = pcl::io::MED_RES_ONLINE_COMPRESSION_WITH_COLOR;// instantiate point cloud compression for encoding and decodingPointCloudEncoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> (compressionProfile, showStatistics);PointCloudDecoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> ();// create a new grabber for OpenNI devicespcl::Grabber* interface = new pcl::OpenNIGrabber ();// make callback function from member functionstd::function<void(const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f =[this] (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr& cloud) { cloud_cb_ (cloud); };// connect callback function for desired signal. In this case its a point cloud with color valuesboost::signals2::connection c = interface->registerCallback (f);// start receiving point cloudsinterface->start ();while (!viewer.wasStopped ()){sleep (1);}interface->stop ();// delete point cloud compression instancesdelete (PointCloudEncoder);delete (PointCloudDecoder);}pcl::visualization::CloudViewer viewer;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudEncoder;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudDecoder;};int
main ()
{SimpleOpenNIViewer v;v.run ();return (0);
}

2、空间分区与点云检索

      下篇文章单独讲检索

3、点云数据空间变换检测

官网demo:Spatial change detection on unorganized point cloud data — Point Cloud Library 0.0 documentationicon-default.png?t=N7T8https://pcl.readthedocs.io/projects/tutorials/en/latest/octree_change.html#octree-change-detection

八叉树是一种基于树的数据结构,用于组织稀疏的三维数据。在本demo中,我们将学习如何使用八叉树实现来检测多个无组织点云之间的空间变化,这些变化可能在大小,分辨率,密度和点顺序上有所不同。变换检测主要用于检测点云数据中不同时间点之间的变化。这种变化检测在很多实际应用场景中非常有用,特别是需要监控环境变化或检测动态物体的领域,即识别到场景中物体的变换。

通过递归比较八叉树的树结构,可以识别由体素配置差异所代表的空间变化。

此外,我们解释了如何使用pcl八叉树“双缓冲”技术,使我们能够随着时间的推移有效地处理多个点云。

3.1 示例

#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/octree/octree_pointcloud_changedetector.h>
#include <iostream>int main() {// 定义点云类型typedef pcl::PointXYZ PointT;// 创建两个点云pcl::PointCloud<PointT>::Ptr cloudA(new pcl::PointCloud<PointT>);pcl::PointCloud<PointT>::Ptr cloudB(new pcl::PointCloud<PointT>);// 添加点到第一个点云 (cloudA)cloudA->push_back(PointT(1.0, 1.0, 1.0));cloudA->push_back(PointT(1.0, 2.0, 1.0));cloudA->push_back(PointT(1.0, 3.0, 1.0));// 添加点到第二个点云 (cloudB)cloudB->push_back(PointT(1.0, 1.0, 1.0));cloudB->push_back(PointT(1.0, 2.0, 1.0));cloudB->push_back(PointT(1.0, 3.0, 1.0));cloudB->push_back(PointT(1.0, 4.0, 1.0)); // 新增点// 创建八叉树变化检测器,设置分辨率float resolution = 0.5f;pcl::octree::OctreePointCloudChangeDetector<PointT> octree(resolution);// 将第一个点云 (cloudA) 添加到八叉树中octree.setInputCloud(cloudA);octree.addPointsFromInputCloud();// 切换到第二个点云 (cloudB)octree.switchBuffers();octree.setInputCloud(cloudB);octree.addPointsFromInputCloud();// 获取变化检测结果std::vector<int> newPointIdxVector;octree.getPointIndicesFromNewVoxels(newPointIdxVector);// 输出变化点的索引和坐标std::cout << "Points added in cloudB:" << std::endl;for (std::size_t i = 0; i < newPointIdxVector.size(); ++i) {std::cout << "Index: " << newPointIdxVector[i]<< ", Point: " << cloudB->points[newPointIdxVector[i]].x << " "<< cloudB->points[newPointIdxVector[i]].y << " "<< cloudB->points[newPointIdxVector[i]].z << std::endl;}return 0;
}

3.2 解释 

  • 定义点云类型:使用 pcl::PointXYZ 作为点云的点类型
  • 创建点云:创建两个点云 cloudAcloudB 并向其中添加点
  • 创建八叉树变化检测器:使用 pcl::octree::OctreePointCloudChangeDetector 创建八叉树变化检测器,并设置分辨率。分辨率决定了八叉树的叶子节点大小,即检测变化的精度
  • 添加第一个点云到八叉树中:将第一个点云(cloudA)添加到八叉树中
  • 切换缓冲区:调用 switchBuffers 方法,这样八叉树会保存之前点云的状态,并准备接收新的点云数据。

       OctreePointCloudChangeDetector类继承自Octree2BufBase类,后者能够同时在内存中保持和管理两个八树。此外,它实现了一个内存池,可以重用已经分配的节点对象,从而在生成多点云的八叉树时减少昂贵的内存分配和释放操作。通过调用" octree. switchbuffers() ",重置了八叉树类,同时在内存中保留了之前的八叉树结构。

  • 添加第二个点云到八叉树中:将第二个点云(cloudB)添加到八叉树中。
  • 获取变化检测结果:调用 getPointIndicesFromNewVoxels 方法,获取在第二个点云中新增的点的索引。

      为了检索存储在当前八叉树结构(基于cloudB)体素上的点,这些点在之前的八叉树结构(基于cloudA)中不存在,我们可以调用“getPointIndicesFromNewVoxels”方法,该方法返回结果点索引的向量。

  • 输出变化点:遍历新点的索引,并输出它们的坐标。

三、接口文档学习

pcl_octree库提供了从点云数据创建分层树数据结构的有效方法。这允许对点数据集进行空间分区、下采样和搜索操作。每个八叉树节点要么有八个子节点,要么没有子节点。根节点描述了一个立方体边界框,它封装了所有的点。在每个树级别,该空间被细分为2倍,从而提高体素分辨率。

pcl_octree实现提供了高效的最近邻搜索例程,如“体素内邻居搜索”、“K近邻搜索”和“半径内邻居搜索”。它会根据点数据集自动调整其尺寸。一组叶节点类提供了额外的功能,例如空间“占用”和“每体素点密度”检查。序列化和反序列化函数能够有效地将八叉树结构编码为二进制格式。此外,在需要高速创建八叉树的场景中,内存池实现减少了昂贵的内存分配和释放操作。

1、Octree模块主要类

  1. pcl::octree::OctreePointCloud<T>

    • 功能:这是 Octree 模块的基类,提供了基本的八叉树结构和功能,包括树的构建、插入、删除等操作。
    • 主要子类
      • pcl::octree::OctreePointCloudSinglePoint<T>
      • pcl::octree::OctreePointCloudPointVector<T>
      • pcl::octree::OctreePointCloudVoxelCentroid<T>
  2. pcl::octree::OctreePointCloudSinglePoint<T>

    • 功能:此类继承自 OctreePointCloud<T>,用于每个八叉树节点存储单个点。
  3. pcl::octree::OctreePointCloudPointVector<T>

    • 功能:此类继承自 OctreePointCloud<T>,用于每个八叉树节点存储一个点向量(多个点)。
  4. pcl::octree::OctreePointCloudVoxelCentroid<T>

    • 功能:此类继承自 OctreePointCloud<T>,用于每个八叉树节点存储体素(Voxel)质心。
  5. pcl::octree::OctreePointCloudSearch<T>

    • 功能:提供搜索功能,包括邻域搜索、半径搜索和 K 近邻搜索等。继承自 OctreePointCloudPointVector<T>
  6. pcl::octree::OctreePointCloudCompression<T>

    • 功能:用于点云数据的压缩和解压缩,利用八叉树结构来减少数据存储需求。

2、类之间的关系

OctreePointCloud<T> 是 Octree 模块的基类,其他类通过继承自它来实现不同的功能。具体关系如下:

  • pcl::octree::OctreePointCloud<T>:基类,定义了基本的八叉树操作。
    • pcl::octree::OctreePointCloudSinglePoint<T>:继承自 OctreePointCloud<T>,每个节点存储一个点。
    • pcl::octree::OctreePointCloudPointVector<T>:继承自 OctreePointCloud<T>,每个节点存储一个点向量。
    • pcl::octree::OctreePointCloudVoxelCentroid<T>:继承自 OctreePointCloud<T>,每个节点存储一个体素质心。
    • pcl::octree::OctreePointCloudSearch<T>:继承自 OctreePointCloudPointVector<T>,提供搜索功能。
    • pcl::io::OctreePointCloudCompression<T>:独立实现,但依赖 Octree 结构进行压缩和解压缩。

这篇关于点云处理中阶 Octree模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002986

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2