STM32H743的FDCAN使用方法(1):STM32CubeMX初始化代码生成

本文主要是介绍STM32H743的FDCAN使用方法(1):STM32CubeMX初始化代码生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 工具准备

1.STM32CubeMX

1 前言

本文介绍基于STM32CubeMX,使用stm32h743xi的对FDCAN2进行配置的方法。

2 初始化代码生成

2.1 选择FDCAN引脚

本例选择PB5、PB6作为FDCAN2的RX、TX引脚。
在这里插入图片描述
在这里插入图片描述

2.2 选择FDCAN时钟源

本例选择PLL2Q作为FDCAN时钟源,频率设置为100MHz。配置如下:
在这里插入图片描述
在这里插入图片描述

2.3 FDCAN参数设置

这一部分可以在代码里修改,一般设置标准帧过滤器个数、扩展帧过滤器个数、RX FIFO个数、TX FIFO个数、RX FIFIO元素大小、TX FIFO元素大小即可,其余参数在代码里修改。
在这里插入图片描述
本例使用中断接收CAN报文,使能所有FDCAN2相关中断:
在这里插入图片描述
可以在NVIC选项里修改FDCAN2抢占优先级和子优先级为(3,0):
在这里插入图片描述

2.4 初始化代码生成

配置好后,直接点击“生成”按钮生成我们需要的初始化代码:
在这里插入图片描述
生成的初始化相关代码如下:

/*** @brief FDCAN2 Initialization Function* @param None* @retval None*/
static void MX_FDCAN2_Init(void)
{/* USER CODE BEGIN FDCAN2_Init 0 *//* USER CODE END FDCAN2_Init 0 *//* USER CODE BEGIN FDCAN2_Init 1 *//* USER CODE END FDCAN2_Init 1 */hfdcan2.Instance = FDCAN2;hfdcan2.Init.FrameFormat = FDCAN_FRAME_CLASSIC;hfdcan2.Init.Mode = FDCAN_MODE_NORMAL;hfdcan2.Init.AutoRetransmission = DISABLE;hfdcan2.Init.TransmitPause = DISABLE;hfdcan2.Init.ProtocolException = DISABLE;hfdcan2.Init.NominalPrescaler = 10;hfdcan2.Init.NominalSyncJumpWidth = 1;hfdcan2.Init.NominalTimeSeg1 = 17;hfdcan2.Init.NominalTimeSeg2 = 2;hfdcan2.Init.DataPrescaler = 1;hfdcan2.Init.DataSyncJumpWidth = 1;hfdcan2.Init.DataTimeSeg1 = 1;hfdcan2.Init.DataTimeSeg2 = 1;hfdcan2.Init.MessageRAMOffset = 0;hfdcan2.Init.StdFiltersNbr = 1;hfdcan2.Init.ExtFiltersNbr = 1;hfdcan2.Init.RxFifo0ElmtsNbr = 64;hfdcan2.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;hfdcan2.Init.RxFifo1ElmtsNbr = 0;hfdcan2.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;hfdcan2.Init.RxBuffersNbr = 0;hfdcan2.Init.RxBufferSize = FDCAN_DATA_BYTES_64;hfdcan2.Init.TxEventsNbr = 0;hfdcan2.Init.TxBuffersNbr = 0;hfdcan2.Init.TxFifoQueueElmtsNbr = 32;hfdcan2.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;hfdcan2.Init.TxElmtSize = FDCAN_DATA_BYTES_64;if (HAL_FDCAN_Init(&hfdcan2) != HAL_OK){Error_Handler();}/* USER CODE BEGIN FDCAN2_Init 2 *//* USER CODE END FDCAN2_Init 2 */}/**
* @brief FDCAN MSP Initialization
* This function configures the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* hfdcan)
{GPIO_InitTypeDef GPIO_InitStruct = {0};RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};if(hfdcan->Instance==FDCAN2){/* USER CODE BEGIN FDCAN2_MspInit 0 *//* USER CODE END FDCAN2_MspInit 0 *//** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;PeriphClkInitStruct.PLL2.PLL2M = 5;PeriphClkInitStruct.PLL2.PLL2N = 80;PeriphClkInitStruct.PLL2.PLL2P = 2;PeriphClkInitStruct.PLL2.PLL2Q = 4;PeriphClkInitStruct.PLL2.PLL2R = 1;PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_2;PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE;PeriphClkInitStruct.PLL2.PLL2FRACN = 0;PeriphClkInitStruct.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL2;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK){Error_Handler();}/* Peripheral clock enable */__HAL_RCC_FDCAN_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();/**FDCAN2 GPIO ConfigurationPB5     ------> FDCAN2_RXPB6     ------> FDCAN2_TX*/GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN2;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/* FDCAN2 interrupt Init */HAL_NVIC_SetPriority(FDCAN2_IT0_IRQn, 3, 0);HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);HAL_NVIC_SetPriority(FDCAN2_IT1_IRQn, 3, 0);HAL_NVIC_EnableIRQ(FDCAN2_IT1_IRQn);HAL_NVIC_SetPriority(FDCAN_CAL_IRQn, 3, 0);HAL_NVIC_EnableIRQ(FDCAN_CAL_IRQn);/* USER CODE BEGIN FDCAN2_MspInit 1 *//* USER CODE END FDCAN2_MspInit 1 */}}/**
* @brief FDCAN MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* hfdcan)
{if(hfdcan->Instance==FDCAN2){/* USER CODE BEGIN FDCAN2_MspDeInit 0 *//* USER CODE END FDCAN2_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_FDCAN_CLK_DISABLE();/**FDCAN2 GPIO ConfigurationPB5     ------> FDCAN2_RXPB6     ------> FDCAN2_TX*/HAL_GPIO_DeInit(GPIOB, GPIO_PIN_5|GPIO_PIN_6);/* FDCAN2 interrupt DeInit */HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn);HAL_NVIC_DisableIRQ(FDCAN_CAL_IRQn);/* USER CODE BEGIN FDCAN2_MspDeInit 1 *//* USER CODE END FDCAN2_MspDeInit 1 */}}
/*** @brief This function handles FDCAN2 interrupt 0.*/
void FDCAN2_IT0_IRQHandler(void)
{/* USER CODE BEGIN FDCAN2_IT0_IRQn 0 *//* USER CODE END FDCAN2_IT0_IRQn 0 */HAL_FDCAN_IRQHandler(&hfdcan2);/* USER CODE BEGIN FDCAN2_IT0_IRQn 1 *//* USER CODE END FDCAN2_IT0_IRQn 1 */
}/*** @brief This function handles FDCAN2 interrupt 1.*/
void FDCAN2_IT1_IRQHandler(void)
{/* USER CODE BEGIN FDCAN2_IT1_IRQn 0 *//* USER CODE END FDCAN2_IT1_IRQn 0 */HAL_FDCAN_IRQHandler(&hfdcan2);/* USER CODE BEGIN FDCAN2_IT1_IRQn 1 *//* USER CODE END FDCAN2_IT1_IRQn 1 */
}
/*** @brief This function handles FDCAN calibration unit interrupt.*/
void FDCAN_CAL_IRQHandler(void)
{/* USER CODE BEGIN FDCAN_CAL_IRQn 0 *//* USER CODE END FDCAN_CAL_IRQn 0 */HAL_FDCAN_IRQHandler(&hfdcan2);/* USER CODE BEGIN FDCAN_CAL_IRQn 1 *//* USER CODE END FDCAN_CAL_IRQn 1 */
}

这篇关于STM32H743的FDCAN使用方法(1):STM32CubeMX初始化代码生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002669

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施: