本文主要是介绍Java并发包之闭锁/栅栏/信号量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、Java多线程总结:
- 描述线程的类:Runable和Thread都属于java.lang包。
- 内置锁synchronized属于jvm关键字,内置条件队列操作接口Object.wait()/notify()/notifyAll()属于java.lang包。
- 提供内存可见性和防止指令重排的volatile属于jvm关键字。
- 而java.util.concurrent包(J.U.C)中包含的是java并发编程中有用的一些工具类,包括几个部分:
- locks部分:包含在java.util.concurrent.locks包中,提供显式锁(互斥锁和速写锁)相关功能。
- atomic部分:包含在java.util.concurrent.atomic包中,提供原子变量类相关的功能,是构建非阻塞算法的基础。
- executor部分:散落在java.util.concurrent包中,提供线程池相关的功能。
- collections部分:散落在java.util.concurrent包中,提供并发容器相关功能。
- tools部分:散落在java.util.concurrent包中,提供同步工具类,如信号量、闭锁、栅栏等功能。
二、同步工具类详解
1、Semaphore信号量:跟锁机制存在一定的相似性,semaphore也是一种锁机制,所不同的是,reentrantLock是只允许一个线程获得锁,而信号量持有多个许可(permits),允许多个线程获得许可并执行。可以用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。
示例代码:
5 public class TIJ_semaphore {6 public static void main(String[] args) {7 ExecutorService exec = Executors.newCachedThreadPool();8 final Semaphore semp = new Semaphore(5); // 5 permits9
10 for (int index = 0; index < 20; index++) {
11 final int NO = index;
12 Runnable run = new Runnable() {
13 public void run() {
14 try {// if 1 permit avaliable, thread will get a permits and go; if no permit avaliable, thread will block until 1 avaliable
15 semp.acquire();
16 System.out.println("Accessing: " + NO);
17 Thread.sleep((long) (10000);
18 semp.release();
19 } catch (InterruptedException e) {
20 }
21 }
22 };
23 exec.execute(run);
24 }
25 exec.shutdown();
26 }
2、CountDownLatch闭锁:允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行。CountDownLatch是通过一个计数器来实现的,计数器的初始值为线程的数量。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上等待的线程就可以恢复执行任务。
主要方法:
1. CountDownLatch.await():将某个线程阻塞住,直到计数器count=0才恢复执行。
2. CountDownLatch.countDown():将计数器count减1。
使用场景:
1. 实现最大的并行性:有时我们想同时启动多个线程,实现最大程度的并行性。例如,我们想测试一个单例类。如果我们创建一个初始计数为1的CountDownLatch,并让所有线程都在这个锁上等待,那么我们可以很轻松地完成测试。我们只需调用 一次countDown()方法就可以让所有的等待线程同时恢复执行。
2. 开始执行前等待n个线程完成各自任务:例如应用程序启动类要确保在处理用户请求前,所有N个外部系统已经启动和运行了。
3. 死锁检测:一个非常方便的使用场景是,你可以使用n个线程访问共享资源,在每次测试阶段的线程数目是不同的,并尝试产生死锁。
4. 计算并发执行某个任务的耗时。
示例代码:
public class CountDownLatchTest { public void timeTasks(int nThreads, final Runnable task) throws InterruptedException{ final CountDownLatch startGate = new CountDownLatch(1); final CountDownLatch endGate = new CountDownLatch(nThreads); for(int i = 0; i < nThreads; i++){ Thread t = new Thread(){ public void run(){ try{ startGate.await(); try{ task.run(); }finally{ endGate.countDown(); } }catch(InterruptedException ignored){ } } }; t.start(); } long start = System.nanoTime(); System.out.println("打开闭锁"); startGate.countDown(); endGate.await(); long end = System.nanoTime(); System.out.println("闭锁退出,共耗时" + (end-start)); } public static void main(String[] args) throws InterruptedException{ CountDownLatchTest test = new CountDownLatchTest(); test.timeTasks(5, test.new RunnableTask()); } class RunnableTask implements Runnable{ @Override public void run() { System.out.println("当前线程为:" + Thread.currentThread().getName()); } } 执行结果为:
打开闭锁
当前线程为:Thread-0
当前线程为:Thread-3
当前线程为:Thread-2
当前线程为:Thread-4
当前线程为:Thread-1
闭锁退出,共耗时1109195
3、CyclicBarrier栅栏:用于阻塞一组线程直到某个事件发生。所有线程必须同时到达栅栏位置才能继续执行下一步操作,且能够被重置以达到重复利用。而闭锁是一次性对象,一旦进入终止状态,就不能被重置。
示例代码:
public class CyclicBarrierTest {private final CyclicBarrier barrier;private final Worker[] workers;public CyclicBarrierTest(){int count = Runtime.getRuntime().availableProcessors();this.barrier = new CyclicBarrier(count,new Runnable(){@Overridepublic void run() {System.out.println("所有线程均到达栅栏位置,开始下一轮计算");}});this.workers = new Worker[count];for(int i = 0; i< count;i++){workers[i] = new Worker(i);}}private class Worker implements Runnable{int i;public Worker(int i){this.i = i;}@Overridepublic void run() {for(int index = 1; index < 3;index++){System.out.println("线程" + i + "第" + index + "次到达栅栏位置,等待其他线程到达");try {//注意是await,而不是waitbarrier.await();} catch (InterruptedException e) {e.printStackTrace();return;} catch (BrokenBarrierException e) {e.printStackTrace();return;}}}}public void start(){for(int i=0;i<workers.length;i++){new Thread(workers[i]).start();}}public static void main(String[] args){new CyclicBarrierTest().start();}
}执行结果为:
线程0第1次到达栅栏位置,等待其他线程到达
线程1第1次到达栅栏位置,等待其他线程到达
线程2第1次到达栅栏位置,等待其他线程到达
线程3第1次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
线程3第2次到达栅栏位置,等待其他线程到达
线程2第2次到达栅栏位置,等待其他线程到达
线程0第2次到达栅栏位置,等待其他线程到达
线程1第2次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
这篇关于Java并发包之闭锁/栅栏/信号量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!