[Kaggle]Digit Recognizer

2024-05-25 16:58
文章标签 kaggle recognizer digit

本文主要是介绍[Kaggle]Digit Recognizer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

地址:https://www.kaggle.com/c/digit-recognizer

这同样是一道入门的KAGGLE题目。题目大意是给出一系列的灰度图像(用CSV表格表示像素),来预测该图像是何种数字。这是一个比较经典的图片,对应的方法有很多。可以使用传统的机器学习算法来进行计算,也可以使用深度学习的方法进行。在这一次我使用的是机器学习的SVC(线性支持分类器)来进行处理的。

第一步依然是导入数据。我们把原始数据和测试数据已DATAFRAME的格式进行导入,之后转换成数组的格式并且把标签和图像进行分离。在读入后,我们看一下数据的维度:783(29*27)。显然,这个维度还是有些大,需要设法使用PCA进行降维。

第二步是降维。我使用PCA进行维度处理成50维。

第三步是建模以及参数调整。在这一部分我使用网格搜索进行SVC的参数调整。太慢了。非常的慢。

第四步是训练测试集并且保存。

 

这篇关于[Kaggle]Digit Recognizer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002092

相关文章

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:Mamba模型综述! 型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。 最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案

Kaggle刷比赛的利器,LR,LGBM,XGBoost,Keras

刷比赛利器,感谢分享的人。 摘要 最近打各种比赛,在这里分享一些General Model,稍微改改就能用的 环境: python 3.5.2 XGBoost调参大全: http://blog.csdn.net/han_xiaoyang/article/details/52665396 XGBoost 官方API: http://xgboost.readthedocs.io/en

24/9/3算法笔记 kaggle泰坦尼克

题目: 这次我用两种算法做了这道题 逻辑回归二分类算法 import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegr

Kaggle竞赛——手写数字识别(Digit Recognizer)

目录 1. 数据集介绍2. 数据分析3. 数据处理与封装3.1 数据集划分3.2 将数据转为tensor张量3.3 数据封装 4. 模型训练4.1 定义功能函数4.1 resnet18模型4.3 CNN模型4.4 FCNN模型 5. 结果分析5.1 混淆矩阵5.2 查看错误分类的样本 6. 加载最佳模型7. 参考文献 本次手写数字识别使用了resnet18(比resnet50精度更

leetcode 902. Numbers At Most N Given Digit Set

题目链接 Given an array of digits which is sorted in non-decreasing order. You can write numbers using each digits[i] as many times as we want. For example, if digits = ['1','3','5'], we may write number

Kaggle克隆github项目+文件操作+Kaggle常见操作问题解决方案——一文搞定,以openpose姿态估计项目为例

文章目录 前言一、Kaggle克隆仓库1、克隆项目2、查看目录 二、安装依赖三、文件的上传、复制、转移操作1.上传.pth文件到input目录2、将权重文件从input目录转移到工作目录 三、修改工作目录里的文件内容1、修改demo_camera.py内容 四、运行! 前言 想跑一些深度学习的项目,但是电脑没有显卡,遂看向云服务器Kaggle,这里可以每周免费使用30h的GP

机器学习学习--Kaggle Titanic--LR,GBDT,bagging

参考,机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾  http://www.cnblogs.com/zhizhan/p/5238908.html 机器学习(二) 如何做到Kaggle排名前2%  http://www.jasongj.com/ml/classification/ 一、认识数据 1.把csv文件读入成dataframe格式 import pandas as

kaggle平台free使用GPU

1、注册 请保证在【科学上网】条件下进入如下操作,只有在注册账户和手机号验证时需要。 step1:注册账户 进入kaggle官网:https://www.kaggle.com/,点击右上角【Register】进入注册页面 最好选择使用邮箱注册(!!!如果你先用goole注册,然后改成其他邮箱,再用其他邮箱登录时会报错,需要重新找回密码) 输入【邮箱】、【密码】和【用户名】后,勾选

Kaggle竞赛:Rossmann Store Sales第66名策略复现

之前做过一次Kaggle的时间序列竞赛数据集练习:CSDN链接效果并不理想,之后在Kaggle的评论中又找到了各式各样的模型方法,其中我还手动还原过第三名的Entity Embedding:CSDN链接。这个参赛方法中,使用了除了比赛给出的数据以外的外部数据(天气数据等)。而这次,我准备还原一个没有使用外部数据且方法较为简单,但是效果较好的策略。也就是第66名的策略。 详细的策略可以看这里 R语言

Leetcode181:Number of Digit One

Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n. For example: Given n = 13, Return 6, because digit 1 occurred in the followin