第十六讲:数据在内存中的存储

2024-05-25 13:20
文章标签 数据 内存 存储 第十六

本文主要是介绍第十六讲:数据在内存中的存储,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十六讲:数据在内存中的存储

  • 1.整数在内存中的存储
    • 1.1存储方式
    • 1.2大小端字节序
    • 1.3大小端字节序排序规则
    • 1.4为什么要有大小端
    • 1.5练习
      • 1.5.1练习1
      • 1.5.2练习2
      • 1.5.3练习3
      • 1.5.4练习4
      • 1.5.5练习5
      • 1.5.6练习6
      • 1.5.7练习7
  • 2.浮点数在内存中的存储
    • 2.1练习
    • 2.2浮点数的存储
    • 2.3浮点数的存储过程
      • 2.3.1符号位的存储
      • 2.3.2对于有效数字M的存储
      • 2.3.3对于指数E的存储
        • 2.3.3.1E不全为0或不全为1
        • 2.3.3.2E全为0
        • 2.3.3.3E全为1
    • 2.4题目解析

这一讲分别介绍了整数和浮点数在内存中的存储方式,以及一些题目的解析

1.整数在内存中的存储

1.1存储方式

数据在内存中的存储都是以其二进制位来表示的,而整数的二进制位的表示方法有三种:原码、反码、补码,在内存中,存储的是正数的补码
正数的原码、反码、补码相同
负数的三种表示方式各不相同

那么为什么整数存储的是补码呢?

1.CPU只有加法器,使用补码能够将字符位和数值位统一处理
2.原码和补码进行转换的过程是相同的,不需要额外的硬件电路便可以实现

1.2大小端字节序

当我们对于一个整数变量进行内存监视时,常常会观察到整数的存放顺序和我们创建的变量值顺序是不同的,例如:
在这里插入图片描述
当我们创建了一个a变量时,它在内存中的存储为(VS编译器):
在这里插入图片描述
可以看见,它是倒着存的,不是正着存的,这就涉及到了整数存储顺序的两种方式:大端存储和小端存储

1.3大小端字节序排序规则

大端排序方式:

低位的字节放在高地址,高位的字节放在低地址

小端排序方式:

低位的字节放在低地址,高位的字节放在高地址

我们画图来解析:
在这里插入图片描述

1.4为什么要有大小端

我们常⽤的 X86 结构是⼩端模式,⽽KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是⼤端模式还是⼩端模式。

但是为什么要有着大小端的存在呢?

1.C语言有着多种类型的数(float、 int、char),对于字节安排的问题,必然要被得到处理
2.不同的硬件设计可能导致不同的存储方式,硬件的设计使用某种存储方式可能会优化性能或简化设计
3.不同的存储方式可能对性能有不同的影响

1.5练习

总结:
1.整数在运算时(整型提升、加法、减法)都是补码在进行运算
2.对于整数的打印,分为两种情况:

1.打印有符号整数,如果需要整形提升,那么补的是符号位,将补码转换成原码,进行计算之后将得出值进行打印
2.打印无符号整数,如果需要整形提升,如果最高位为1,补1,为0,补0,和有符号整数相同,但是计算结果时看的是补码,因为无符号整数的原码、反码、补码相同

1.5.1练习1

//设计⼀个⼩程序来判断当前机器的字节序。
//
//设计思路:
//创建一个a变量,赋值为1,其在内存中的存储应该为00 00 00 01
//①如果为小端存储:存储方式应该为01 00 00 00
//②如果为大端存储:存储方式为00 00 00 01
//分别拿出它们首个字节,如果值为1,就是小端存储,如果值位0,就为大端存储
//
//代码1:
int main2()
{int a = 1;if (*((char*)&a))  //注意:这里为&a,因为只能将地址强转成(char*)类型的指针,否则可能会出现越界访问printf("小端存储\n");elseprintf("大端存储\n");return 0;
}//代码2:
int DefA()
{int a = 1;return *((char*)&a);
}int main()
{int ret = DefA();if (ret)printf("小端存储\n");elseprintf("大端存储\n");return 0;
}

1.5.2练习2

//1.5.2练习2
int main()
{char a = -1;//对于char类型的变量,它可能时signed char类型,也可能是unsigned char类型,具体取决于编译器,这里是有符号类型//char类型为一个字节,此时,-1的2进制表示为10000001,它的补码为:11111111//因为-1为整形,所以它的补码结果为:11111111111111111111111111111111,而a为char类型,char类型只能存储11111111,所以对于a://补码:11111111,由于要进行打印,发生整形提升,结果为11111111111111111111111111111111//原码:10000000000000000000000000000001//所以结果为-1signed char b = -1;//char类型在此编译器下就是有符号类型的,所以对于有符号类型的char分析和上面一样//所以结果为-1unsigned char c = -1;//对于无符号类型,仍为1个字节,所以a还是11111111//整型提升结果为00000000000000000000000011111111,因为对于无符号整形,整形提升加0//此时符号位为0,所以原码和补码相同,计算的结果为255printf("a=%d,b=%d,c=%d", a, b, c);//以%d形式打印,表示打印有符号整数return 0;
}

1.5.3练习3

//1.5.3练习3
int main()
{char a = -128;//-128,原码为10000000000000000000000001000000,反码为11111111111111111111111110111111,补码为11111111111111111111111111000000//所以a里存的是11000000//要打印的是无符号整形,进行整形提升,结果为11111111111111111111111111000000//所以结果为4294967168printf("%u\n", a);return 0;
}

1.5.4练习4

//1.5.4练习4
int main()
{char a = 128;//对于128,它的原码为00000000000000000000000010000000//反码:01111111111111111111111101111111//补码:01111111111111111111111110000000//存储到a里,结果为10000000//打印无符号整形,整形提升//补码:11111111111111111111111110000000printf("%u\n", a);return 0;
}

但是,看练习4,当我们要将128这个值存到char类型中时,a为10000000,这显然就是-128呀!这是因为char类型的取值范围为-128 - 127,128根本存不下,这时存储遵循一个规律:
在这里插入图片描述
所以我们可以将他们看成一个循环,对于其他类型的整数(float、int)也是如此

1.5.5练习5

//1.5.5练习5
#include <string.h>int main()
{char a[1000];int i;for (i = 0; i < 1000; i++){a[i] = -1 - i;//strlen是求字符串长度的函数,遇到\0会停止//对于一个char类型的数组,里面放的元素为char类型//而我们已经了解到了,char类型的取值范围为-128 - 127//所以a数组中放的值只能为:-1 -2 -3 ... -127 -128 127 126 ... 2 1 0这些ASCII码值对应的字符//遇到\0停止,所以结果为255}printf("%zd", strlen(a));return 0;
}

1.5.6练习6

//1.5.6练习6
unsigned char i = 0;int main()
{for (i = 0; i <= 255; i++){//无符号char类型的取值范围为0-255,所以会一直满足循环条件,会一直循环进行打印printf("hello world\n");}return 0;
}
#include <windows.h>int main()
{unsigned int i;for (i = 9; i >= 0; i--){//对于无符号int类型,他所有的位都会被当成数值位,所以它不会出现负数的情况//所以它会一直满足条件,一直进行打印printf("%u\n", i);Sleep(100);}return 0;
}

1.5.7练习7

//1.5.7练习7
//X86环境 ⼩端字节序
int main()
{int a[4] = { 1, 2, 3, 4 };int* ptr1 = (int*)(&a + 1);//&a取出的是整个数组的地址,+1表示紧挨着数组的那块地址,将其强转成int*类型的指针赋给ptr1//*(ptr-1)得到的就是4int* ptr2 = (int*)((int)a + 1);//a表示首元素的地址,将其转换成int类型,表示的是一个数!,+1表示地址加1,直接+1就可以了//但是要注意:每一个字节都有一个指针,+1表示的是向后偏移一个字节//对于a,在内存中的存储为0x 01 00 00 00 02 00 00 00 ...(因为为小端存储),向后偏移一个字节,就变成了://00 00 00 02 00 00 00//对他解引用,访问4个字节,所以找到了00 00 00 02,因为为小端存储,所以结果为02000000printf("%x,%x", ptr1[-1], *ptr2);return 0;
}

2.浮点数在内存中的存储

2.1练习

浮点数的存储和整形的存储是不一样的,下面我们就通过一个练习来直观地感受一下:

//2.1练习
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);//9printf("*pFloat的值为:%f\n", *pFloat);//0.000000*pFloat = 9.0;printf("num的值为:%d\n", n);//1091567616printf("*pFloat的值为:%f\n", *pFloat);//9.000000return 0;
}

2.2浮点数的存储

既然知道了整形和浮点型的不同,那么浮点数是怎么存储的呢?

根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下⾯的形式:
在这里插入图片描述
我们通过举例来说:

//2.2浮点数的存储
int main11()
{float a = 5.5;//我们来探讨5.5在内存中的存储形式://5的二进制表示为101.1,写成科学计数法的形式为1.011 * 10^2//所以符号位S为0(因为为整数)//指数位E = 2//数值位为M = 1.011return 0;
}

如果没有看懂,我们通过图像来直观感受:
在这里插入图片描述

我们可以简单理解S、E、M这三个值如上

IEEE 745规定:
1.对于32位的浮点数,最高的一位存储的是符号位,接着八位存储指数E,剩下32位存储有效数字M
2.对于64位的浮点数,最高的一位存储的是符号位,接着十一位存储指数E,剩下52位存储有效数字M

在这里插入图片描述

2.3浮点数的存储过程

2.3.1符号位的存储

符号位的存储只占据一个字节,很简单,是正数就是0,是负数就是1

2.3.2对于有效数字M的存储

其实M的取值范围为1<=M<2,也就是说,M总是可以表示成1…的形式,所以IEEE 754规定,在计算机保存M时,只保存小数点后边的部分,前边的1舍去,等到读取的时候,再将1加上去,这样就节省了一位有效数字,使得精度更高,比如:1.01在进行存储时,只存储01,读取时再将1加上;0.10可以表示成1.0 * 10的负一次幂,所以说它在存储时存储0就可以了,需要注意的是:它要在后边补0,也就是说对于1.1,在存储时存储的是01000000000000000000000

2.3.3对于指数E的存储

对于指数的存储比较复杂,分为三种情况讨论:

2.3.3.1E不全为0或不全为1

因为E的值可能为负数,为了将负数表示出来,我们需要将E的值加上127(在32位机器上,偏移值为127,在64位机器上,偏移值为1023),再将其转换成二进制存储即可,这样即可以通过比较指数的大小来判断两个浮点数的大小关系,同时也可以方便地进行加减乘除等计算操作

这种情况为正常情况,比如0.5的二进制表示形式为0.1,也就是1.0 * 10的负一次幂,在存储数值位时要将数值位的一忽略,所以存储时存储的就是0,补齐23位,也就是00000000000000000000000,指数位值为-1,加上127为126,二进制表示为01111110,符号位为0,所以0.5的二进制表示为:

0 01111110 00000000000000000000000
2.3.3.2E全为0

当E全为0时,指数位的值为1-127(它是规定好的),而且此时数值位在进行复原时,补的不是1了,而是0,此时表示的是一个无限接近于0的一个小数

2.3.3.3E全为1

这时表示的是一个无穷大的数

2.4题目解析

//2.4题目解析
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);//n本来就是一个int类型的数,进行打印,结果为9printf("*pFloat的值为:%f\n", *pFloat);//对于9://原码:00000000000000000000000000001001//对于一个float类型的数,因为要解引用,拿到的是原码://符号位:0 - 正数//数值位:00000000000000000001001 - 0.00000000000000000001001//指数位:00000000 - 原码为00000000 - 1-127 = -126//所以值为0.00000000000000000001001 * 10的-126次幂//他表示0.0000000000000000000...1001是一个很小的数//尽管要拿出来,拿出的也只是0.000000,所以结果为0.000000*pFloat = 9.0;//9的二进制表示1001.0 - 1.001 * 10 ^ 3//符号位:0 - 正数//数值位:1.001 - 00100000000000000000000 - 注意:要在后边补0//指数位:3 + 127 = 130 - 10000010//全部 —— 0 10000010 00100000000000000000000 - 1,091,567,616printf("num的值为:%d\n", n);全部 —— 0 10000010 00100000000000000000000 - 1,091,567,616printf("*pFloat的值为:%f\n", *pFloat);//直接打印出9.000000即可return 0;
}

这篇关于第十六讲:数据在内存中的存储的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001625

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X