int和unsigned int解析和扩展

2024-05-25 09:58
文章标签 解析 扩展 int unsigned

本文主要是介绍int和unsigned int解析和扩展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就如同int a;一样,int 也能被其它的修饰符修饰。除void类型外,基本数据类型之前都可以加各种类型修饰符,类型修饰符有如下四种:
1.signed----有符号,可修饰char、int。Int是默认有符号的。
2.unsigned-----无符号,修饰int 、char
3.long------长型,修饰int 、double
4.short------短型,修饰int

我们主要来看一下signed和unsigned与int之间的联系与区别。
什么叫做有符号,什么叫做无符号
这个问题其实很简单,比如:5和-5,5没有符号,-5有符号。简单吧。但是在计算机中的这种符号可不简单。我们分别来看一下:
在说明有符号和无符号的区别之前,我们必须先知道溢出是怎么回事,因为有无符号的根本原因可以说就是因为数据出现了溢出现象导致的。

溢出:
我们知道数据在计算机中以二进制存储,并且占据一定的空间,而这个空间属于计算机分配的空间。
计算机给int分配32位或者16位(不同电脑可能不同)的空间,既然空间有限,那么数值就会有限制,就会存在最大值与最小值这一说,比如:假设int类型的分配16位,无符号类型的最大值为1111 1111 1111 1111(16个1),也就是65535,如果超过了65535,这就叫做溢出,那该怎么办? 如果要输出65536,那将会输出个什么东西呢? 下面和大家一起看一下:

疑问:有的读者会问:65535这么小啊,我记得自己在输出比65535大好多的数也能够输出啊。
解答: 那就是有无符号的定义和你电脑编译器的原因了。64位的电脑和32的电脑可是不一样的哦。而且int占几个字节是与电脑编译器有关的。不过现在大部分电脑int占4个字节,即32位,那么他的最大值可是32个1(二进制)左右的数量级,你实验过这么大的数吗?

1.无符号整型(unsigned  int)
(1)我们都知道整型是4个字节(有些编译器不同,可能会是2个),即32位,无符号整型当然也为32位。
(2)既然是32位,无符号整型的取值是32个0~32个1,即:0~4294967295
(3) 我们举个例子:32位有点长,所以我们拿16位的unsigned short int 来举例。
short int 是16位的,无符号的范围是0~65535
就拿十进制的32767(以下的所有举例均拿这个数字来说事了)来说,它的二进制为:
               0111 1111 1111 1111
对于无符号的整型32767来说,它的二进制的最高位称为数据位,即那个0就是数据位,数据位是要参与运算的,如果我们把0改成1,即16个1,它的十进制就是65535(就是2的15次方+2的14次方...一直加到2的0次方),这是不同于有符号整型的。
(4) 为了进行理解(3)中的含义,做一个程序说明:

复制代码代码如下:

#include <stdio.h>
main()
{
    unsigned short int a=32767,b=a+1;//定义短整型无符号
    printf("a=%u\nb=%u\n",a,b);//以无符号输出
}




定义的时候a=32767,也就是0111 1111 1111 1111,输出的依然是32767,
a+1=32768, 二进制为1000 0000 0000 0000,输入依然为32768。
根据(3)中讲解的,无符号整型的二进制最高位为数据位,数据位为0为1都是按照正常来算的。

2.有符号整型((signed)int)(1)int类型默认是有符号的,所以int实际上是signed int ,我们通常省略signed
(2)有符号整型也是32位。
(3)它的取值范围就与无符号整型不同了。它的范围是-2147483648~2147483647这个范围可以理解为无符号整型的一半变成了负数。

32位有点长,所以我们拿16位的short int 来举例。
short int 是16位的,有符号的范围是-32768~32767

这个时候可能就有人发问了,32768用二进制表示为1000 0000 0000 0000,那么这个负的32768的负号又怎么理解呢?看下面
(4)举个例子;
还是以32767为例子,它的二进制为:
      0111 1111 1111 1111
对于有符号整型32767来说,它的二进制最高位称为符号位(而不是数据位了),符号位顾名思义就是决定正负号的,规则:0是正,1为负。
(5)列举一个程序理解(4)的内容

复制代码代码如下:

#include <stdio.h>
main()
{
   short int a=32767,b,c,d;//定义无符号类型。
b=a+1;
c=a+2;
d=a+3;
   printf("a=%d\nb=%d\nc=%d\nd=%d\n",a,b,c,d);
}

 

可以看出此时的结果竟然是这个样子的。为什么呢?怎么回事?
其实在计算机中,负数是并不存在的,它是以二进制补码的形式表示和存放。什么是补码呢?

(6)什么是补码,补码的运算。
我们还是列举一个简单的例子吧!就用-6.

我们经过以上的学习已经知道负数的符号位为1,所以:
 (1)-6的二进制: 1000 0000 0000 0110(称为原码,原码是计算机显示给我的)
 (2)对原码求反码:1111 1111 1111 1001(称为反码,保持符号位不变,将原码中的0变1,1变0)
 (3)对反码加1:1111 1111 1111 1010(称为补码,补码是计算机中存储负数的形式)
在计算机中,如果存储的二进制是1111 1111 1111 1010,那么显示在我们前台的十进制数字就是-6。即:负数在计算机中是以该负数的二进制的补码形式存储的。

(7)了解了什么是补码后,再来看我们上述说的那个程序:
  32767的二进制为:0111 1111 1111 1111
我们来计算一下c的值为什么会等于-32767。
c=32767+2,c的二进制为:1000 0000 0000 0001(32767的二进制+2),c的这个二进制是在计算机中存储的补码,需要将它转换为原码,也就是将c的二进制数减一再取反。得到的二进制原码为:1111 1111 1111 1111。我们已经说过,符号位为1,表示负值,并不参加运算,所以此二进制的十进制为:-32767。
但是,上述中,c的原码的确是1111 1111 1111 1111,c在计算机中存储的补码也的确是1000 0000 0000 00010。但是-32767的由来却有另一种理解,c的补码是16位,32位编译器中有32位的二进制,也就是说在16位补码的前面还有(32-16=16)位的虚位数,并不属于计算机给short int分配的空间,但是这16位的位数当数表示正时为0,当数表示负数时为1。并且前16位的数字全部都与二进制倒数第8位的数字一致。也就是说:
  c 的补码是   1...1 1000 0000 0000 0010(1..1表示16个1)
我们可以这样计算:-2的7次方+2的1次方=-32767,这种理解普遍被大众所接受,而且避免了原码的概念。

(8)通过程序也可以发现一个规律,int的取值范围是-32768~32767,把头尾连接起来形成一个环就可以了。

这篇关于int和unsigned int解析和扩展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1001185

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提