[内核内存] slab分配器4---kmem_cache_init_late函数源码详解

2024-05-25 09:48

本文主要是介绍[内核内存] slab分配器4---kmem_cache_init_late函数源码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

slab系统初始化过程中,待所有cpu都完成初始化后,通过调用kmem_cache_init_late来函数完善cache_chain上每个struct kmem_cache实例的cpu缓存机制(包括cpu本地高速缓存和每个节点上的cpu共享缓存shared cache)

kmem_cache_init_late()|---list_for_each_entry(cachep, &slab_caches, list)//遍历slab_caches全局链表中每个struct kmem_cache实例enable_cpucache(cachep, GFP_NOWAIT)//对每个struct kmem_cache实例缓存机制进行完善|--->cache_random_seq_create()//初始化struct kmem_cache实例num成员|--->计算并设置struct kmem_cache实例的limit,batchcount,shared成员|--->do_tune_cpucache()//struct kmem_cache实例缓存机制的完善和其node成员数组中数组项的初始化|--->__do_tune_cpucache()|--->alloc_kmem_cache_cpus()//分配新的本地高速缓存区域(从Per_cpu area分配)|--->将kmem_cache实例的cpu_cache指向新分配的本地高速缓存区域(Per_CPU内存空间)|---for_each_online_cpu(cpu)//遍历每个cpufree_block()//释放对应cpu旧的本地缓存中缓存的slab obj到对应的slab链表中|--->free_percpu()//释放旧的Per_CPU变量,struct kmem_cache实例的高速缓存cpu_cache|--->setup_kmem_cache_nodes()//初始化node数组中每个kmem_cache_nod实例(共享缓存区域														 更新和相关成员初始化)|---for_each_online_node(node)//遍历每个内存节点setup_kmem_cache_node()//对kmem_cache_nod实例进初始化|--->alloc_arraycache()//为当前节点共享缓存区域分配空间|--->将kmem_cache_node实例的shared成员指向新分配的共享缓存空间|--->init_cache_node()//初始化kmem_cache_node实例的的3个slab链																	 表等
// mm/slab.c
/**1.完善全局链表slab_caches上所有struct kmem_cache实例的缓存机制:*	  根据slab obj大小,给本地cpu高速缓存和每个节点shared cache重新分配内存空间,并释放旧缓存缓存的*    slab obj(free_block)和旧缓存本身(kfree))*2.初始化全局链表slab_caches上所有struct kmem_cache实例的node数组中每个struct kmem_cache_node实例的 *  相关数据(主要是每个内存节点中3种类型slab 链表的初始化)*/
void __init kmem_cache_init_late(void)
{struct kmem_cache *cachep;slab_state = UP;/* 6) resize the head arrays to their final sizes */mutex_lock(&slab_mutex);//遍历slab_caches上所有的slab cache描述符(struct kmem_cache结构体实例)list_for_each_entry(cachep, &slab_caches, list)/**完善当前slab cache描述符的cpu高速缓存机制,并对slab cache描述符的node成员中的每个struct kmem_cache_node*实例进行初始化操作.*1.对本地cpu高速缓存(cachep->cpu_cache),通过slab obj的大小重新计算array_cache每个成员的*  值,然后为每个cpu重新分配一个array_cache实例(每cpu变量),并替换旧的arry_cache。*2.若是NUMA结构,完善cpu共享高速缓存机制(分配足够的共享array_cache实例并完成地址关联).*3.为slab cache描述符每个节点对应的struct kmem_cache_node实例的相关成员进行初始化操作,主要是完成3个*  slab链表的初始化*/if (enable_cpucache(cachep, GFP_NOWAIT))BUG();mutex_unlock(&slab_mutex);/* Done! */slab_state = FULL;#ifdef CONFIG_NUMA/** Register a memory hotplug callback that initializes and frees* node.**/hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif/** The reap timers are started later, with a module init call: That part* of the kernel is not yet operational.*/
}   
/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{int err;int limit = 0;int shared = 0;int batchcount = 0;//err = cache_random_seq_create(cachep, cachep->num, gfp);if (err)goto end;//判断该slab cache描述符是否属于某一个memcg组,是的画,用该组root节点对应的数据进行初始化if (!is_root_cache(cachep)) {struct kmem_cache *root = memcg_root_cache(cachep);limit = root->limit;shared = root->shared;batchcount = root->batchcount;}//找到memcg组,直接完成了初始化设置,不许要根据obj大小进行成员值预估if (limit && shared && batchcount)goto skip_setup;/** The head array serves three purposes:* - create a LIFO ordering, i.e. return objects that are cache-warm* - reduce the number of spinlock operations.* - reduce the number of linked list operations on the slab and*   bufctl chains: array operations are cheaper.* The numbers are guessed, we should auto-tune as described by* Bonwick.*/// 根据对象(slab obj)的大小计算local cache中对象的数量 if (cachep->size > 131072)limit = 1;else if (cachep->size > PAGE_SIZE)limit = 8;else if (cachep->size > 1024)limit = 24;else if (cachep->size > 256)limit = 54;elselimit = 120;/** CPU bound tasks (e.g. network routing) can exhibit cpu bound* allocation behaviour: Most allocs on one cpu, most free operations* on another cpu. For these cases, an efficient object passing between* cpus is necessary. This is provided by a shared array. The array* replaces Bonwick's magazine layer.* On uniprocessor, it's functionally equivalent (but less efficient)* to a larger limit. Thus disabled by default.* 多核下设置共享本地缓存实例的个数(struct kmem_cache的shared成员),该slab描述符每个节点的共享缓存中最大* obj数量为cachep->shared*batchcount*/shared = 0;if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)shared = 8;batchcount = (limit + 1) / 2;
skip_setup:/**根据前面计算出的limit, batchcount, shared值,为当前slab cache缓存更新本地cpu高速缓存和设置共享cpu高速缓存*/err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
end:if (err)pr_err("enable_cpucache failed for %s, error %d\n",cachep->name, -err);return err;
}
/**(1)设置slab cache描述符的本地cpu高速缓存cpu_cache(每cpu变量,是个数组,数组中每个元素对应每个cpu):*	 struct kmem_cache的cpu_caches数组中的每个成员需要更新成根据slab obj实际大小计算出来的新struct *   array_cache实例,同时将旧的固定大小的struct array_cache释放*(2)设置slab cache描述符的共享cpu高速缓存:* 		a.设置struct kmem_cache的shared值*		b.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node对应节点上的cpu共享缓存数组.*		   就是跟给该slab cache缓存对应的每个节点分配足够多的struct arrary_cache实例*		c.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node实例对应节点的3个slab链表		*/
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,int batchcount, int shared, gfp_t gfp)
{int ret;struct kmem_cache *c;ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);if (slab_state < FULL)return ret;if ((ret < 0) || !is_root_cache(cachep))return ret;lockdep_assert_held(&slab_mutex);for_each_memcg_cache(c, cachep) {/* return value determined by the root cache only */__do_tune_cpucache(c, limit, batchcount, shared, gfp);}return ret;
}
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,int batchcount, int shared, gfp_t gfp)
{struct array_cache __percpu *cpu_cache, *prev;int cpu;// 根据limit, batchcount数值,为每个cpu构建新的array_cache实例并存储在cpu_cache数组cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);if (!cpu_cache)return -ENOMEM;//旧的固定大小的array_cache实例数组prev = cachep->cpu_cache;//将根据slab obj大小计算出来的新本地cpu高速缓存赋值给slab cache描述符的cpu_cache成员cachep->cpu_cache = cpu_cache;//各个cpu上的每cpu变量数据同步(cachep->cpu_cache更新)kick_all_cpus_sync();check_irq_on();//更新该slab cache描述符中与本地cpu高速缓存有关的成员数据cachep->batchcount = batchcount;cachep->limit = limit;cachep->shared = shared;if (!prev)goto setup_node;/**此循环就是将旧的本地cpu高速缓存中缓存的slab obj释放给其slab系统.因为slab系统初始化时由于每个本地高*速缓存对应的avail为0,所以此处可被忽略。*/for_each_online_cpu(cpu) {LIST_HEAD(list);int node;struct kmem_cache_node *n;struct array_cache *ac = per_cpu_ptr(prev, cpu);node = cpu_to_mem(cpu);n = get_node(cachep, node);spin_lock_irq(&n->list_lock);free_block(cachep, ac->entry, ac->avail, node, &list);spin_unlock_irq(&n->list_lock);slabs_destroy(cachep, &list);}//将旧的cpu本地高速缓存这一Per_CPU变量释放(释放到每个cpu的Per_CPU area)free_percpu(prev);setup_node:return setup_kmem_cache_nodes(cachep, gfp);//分配lab cache描述每个节点对应的共享缓存区域,然后将每个节点对												 应的struct kmem_cache_node实例成员进行初始化。
}
// mm/slab.c
/*This initializes kmem_cache_node or resizes various caches for all nodes*/
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
{......//遍历每个节点,并给每个节点的本地cpu高速缓存进行更新for_each_online_node(node) {ret = setup_kmem_cache_node(cachep, node, gfp, true);}......
}/**给slab cache描述符node数组成员中的每个struct kmem_cache_node实例进行初始化,主要工作:* 1.共享高速缓存shared成员进行内存空间分配(缓存的entry数组长度cachep->shared*cachep->batchcount)* 2.3种类型slab链表的初始化。*/
static int setup_kmem_cache_node(struct kmem_cache *cachep,int node, gfp_t gfp, bool force_change)
{int ret = -ENOMEM;struct kmem_cache_node *n;struct array_cache *old_shared = NULL;struct array_cache *new_shared = NULL;struct alien_cache **new_alien = NULL;LIST_HEAD(list);if (use_alien_caches) {new_alien = alloc_alien_cache(node, cachep->limit, gfp);if (!new_alien)goto fail;}//多cpu,slab cache描述符需要给每个内存节点分配一个共享cpu缓存区域if (cachep->shared) {/**每个节点分配的共享缓存区域最多能缓存cachep->shared * cachep->batchcount个slab obj,分配对应空间,并*将虚拟地址记录到new_shared上*/new_shared = alloc_arraycache(node,cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);if (!new_shared)goto fail;}/**1.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的free_limit成员进行初始化(*   free_limit表示该slab cache描述在对应节点中空闲obj的数量上限,超过该值就会将一定数量的slab obj释放到伙*   伴系统的空闲链表中)*2.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的3个类型slab链表进行初始化。*/ret = init_cache_node(cachep, node, gfp);if (ret)goto fail;//获取本slab cache描述符cachep对应节点node的struct kmem_cache_node的描述符n = get_node(cachep, node);spin_lock_irq(&n->list_lock);/**释放slab cache描述符管理的每个内存节点旧的cpu共享高速缓存中缓存的slab obj,释放到对应的slab链表中,就是释放*n->shared->entry数组中每个数组项指向的slab obj对象.*/if (n->shared && force_change) {free_block(cachep, n->shared->entry,n->shared->avail, node, &list);n->shared->avail = 0;}/**将新新分配并初始化的共享cpu缓存空间赋值给slab描述符对应节点的struct kmem_cache_node实例的shared成*员*/if (!n->shared || force_change) {old_shared = n->shared;n->shared = new_shared;new_shared = NULL;}if (!n->alien) {n->alien = new_alien;new_alien = NULL;}spin_unlock_irq(&n->list_lock);slabs_destroy(cachep, &list);/** To protect lockless access to n->shared during irq disabled context.* If n->shared isn't NULL in irq disabled context, accessing to it is* guaranteed to be valid until irq is re-enabled, because it will be* freed after synchronize_sched().*/if (old_shared && force_change)synchronize_sched();
fail://收尾工作释放旧的struct array_cache(释放到对应slab系统的本地高速缓存中)kfree(old_shared);kfree(new_shared);free_alien_cache(new_alien);return ret;
}

ps:

  1. 上面代码中free_block和kfree函数区别:
    1. free_block函数是把struct array_cache实例中的avail个entry数组指向的slab obj释放到对应的slab系统中(对应节点的所属的slab链表上)
    2. kfree函数基本同于free_block,但kfree将struct array_cache的slab obj释放到对应slab系统的每cpu高速缓存中.

这篇关于[内核内存] slab分配器4---kmem_cache_init_late函数源码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001159

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹