设 m , n m,n m,n 和 p p p 为正整数。证明:多项式 g ( x ) = x 2 + x + 1 g(x)=x^2+x+1 g(x)=x2+x+1 整除多项式 f ( x ) = x 3 m + x 3 n + 1 + x 3 p + 2 f(x)=x^{3m}+x^{3n+1}+x^{3p+2} f(x)=x3m+x3n+1+x3p+2. 将 f ( x ) f(x
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132978866 Paper: DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models 扩散概率模型