2020icml专题

论文阅读《2020ICML:Inductive Relation Prediction by Subgraph Reasoning》

论文链接 论文工作简介 知识图谱中关系预测的主要范式涉及实体和关系的潜在表示(即嵌入)的学习和操作。 然而,这些基于嵌入的方法并没有显式地捕获知识图谱背后的组合逻辑规则,并且它们仅限于直推式设置,在直推式设置中,实体的全部集合必须在训练期间已知。 本文提出了一种基于图神经网络的关系预测框架GraIL,它在局部子图结构上进行推理,并具有很强的归纳偏差来学习实体独立的关系语义。 如右图,