齐普夫专题

【Python机器学习】NLP词中的数学——齐普夫定律

齐普夫定律指出:在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。 具体的说,这里的反比例关系指的是这样一种情况:排序列表中某一项的出现频率与其在排序列表中的排名成反比。例如,排序列表中的第一项出现的频率是第二项的2倍,是第三项的3倍。对于任何语料库或文档,我们可以快速做的一件事就是:绘制词的使用频率与它们的频率排名之间的关系。 齐普夫定律适用于很多东西的计数。比如某国城市

齐普夫定律在循环神经网络中的语言模型的应用

目录 齐普夫定律解释公式解释图与公式的关系代码与图的分析结论 使用对数表达方式的原因1. 线性化非线性关系2. 方便数据可视化和分析3. 降低数值范围4. 方便参数估计公式详细解释结论 来自:https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/language-models-and-dataset.html

齐普夫定律学习笔记

齐普夫定律: 齐普夫定律是美国学者G.K.齐普夫于20世纪40年代提出的词频分布定律。它可以表述为:如果把一篇较长文章中每个词出现的频次统计起来,按照高频词在前、低频词在后的递减顺序排列,并用自然数给这些词编上等级序号,即频次最高的词等级为1,频次次之的等级为2,……,频次最小的词等级为D。若用f表示频次,r表示等级序号,则有fr=C(C为常数)。人们称该式为齐普夫定律。 关于单词在文献中