首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
科学实践专题
数据科学实践中常犯的十二种错误
如果是初学者,当你参加数据科学项目时,应避免以下十二种常见错误。 1没有检查你的数据 你需要检查自己即将收集/使用的数据的量与质。“你的工程中大部分的时间,通常是80%的时间,将用于获取和清洗数据,”data.world的数据科学家和知识工程师Jonathan Ortiz如是说。“你需要检查是否记录好了需要用于分析的数据” 如果你正在记录与收集数据,可能会记录错误,记录的方式可能前后不一致,记
阅读更多...
数据科学实践:探索数据驱动的决策
写在前面 你是否曾经困扰于如何从海量的数据中提取有价值的信息?你是否想过如何利用数据来指导你的决策,让你的决策更加科学和精确?如果你有这样的困扰和疑问,那么你来对了地方。这篇文章将引导你走进数据科学的世界,探索数据驱动的决策。 1.数据科学的基本原则 在我们深入探讨如何实践数据科学之前,有必要理解一些核心原则。这些原则是我们在处理任何数据问题时都需要遵循的,它们是我们进行有效分析并得出有意义
阅读更多...
数据科学实践:探索数据驱动的决策
写在前面 你是否曾经困扰于如何从海量的数据中提取有价值的信息?你是否想过如何利用数据来指导你的决策,让你的决策更加科学和精确?如果你有这样的困扰和疑问,那么你来对了地方。这篇文章将引导你走进数据科学的世界,探索数据驱动的决策。 1.数据科学的基本原则 在我们深入探讨如何实践数据科学之前,有必要理解一些核心原则。这些原则是我们在处理任何数据问题时都需要遵循的,它们是我们进行有效分析并得出有意义
阅读更多...