来重专题

开放题:如何利用深度学习来重参数化 K-means 聚类,这样的思路要做出效果,它的前向传播、反向传播以及优化目标最好是什么样的?

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 传统的 K-means 算法直接处理数据点与聚类中心。重参数化技术的核心在于利用神经网络来学习一个从输入空间映射到聚类分配的转换函数。深度学习重参数化 K-means 聚类的核心思想在于,将传统 K-means 算法中的硬分配机制转化为可微分的软分配,进而利用神经网络学习并优化特征表示。此方法巧妙融合了