本科课程专题

深度学习本科课程 实验2 前馈神经网络

任务 3.3 课程实验要求 (1)手动实现前馈神经网络解决上述回归、二分类、多分类任务 l 从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) (2)利用torch.nn实现前馈神经网络解决上述回归、二分类、多分类任务 l 从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) (3)在多分类任务中使用至少三种不同的激活函数 l 使用不同的激活函数,进行对比

机器学习本科课程 实验5 贝叶斯分类

实验1.使用sklearn的GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测任务 实验内容: 使用GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测计算各自十折交叉验证的精度、查准率、查全率、F1值根据精度、查准率、查全率、F1值的实际意义以及四个值的对比阐述三个算法在肿瘤预测中的表现对比 1. 读取数据集 import

深度学习本科课程 实验5 循环神经网络

循环神经网络实验 任务内容 理解序列数据处理方法,补全面向对象编程中的缺失代码,并使用torch自带数据工具将数据封装为dataloader分别采用手动方式以及调用接口方式实现RNN、LSTM和GRU,并在至少一种数据集上进行实验从训练时间、预测精度、Loss变化等角度对比分析RNN、LSTM和GRU在相同数据集上的实验结果(最好使用图表展示)不同超参数的对比分析(包括hidden_size、

深度学习本科课程 实验1 Pytorch基本操作

一、Pytorch基本操作考察 1.1 任务内容 使用 𝐓𝐞𝐧𝐬𝐨𝐫 初始化一个 𝟏×𝟑 的矩阵 𝑴 和一个 𝟐×𝟏 的矩阵 𝑵,对两矩阵进行减法操作(要求实现三种不同的形式),给出结果并分析三种方式的不同(如果出现报错,分析报错的原因),同时需要指出在计算过程中发生了什么① 利用 𝐓𝐞𝐧𝐬𝐨𝐫 创建两个大小分别 𝟑×𝟐 和 𝟒×𝟐 的随机数矩阵 �

机器学习本科课程 大作业 多元时间序列预测

1. 问题描述 1.1 阐述问题 对某电力部门的二氧化碳排放量进行回归预测,有如下要求 数据时间跨度从1973年1月到2021年12月,按月份记录。数据集包括“煤电”,“天然气”,“馏分燃料”等共9个指标的数据(其中早期的部分指标not available)要求预测从2022年1月开始的半年时间的以下各个部分的排放量 二氧化碳的排放情况具体分为九项指标: Coal Electric Po

编译原理本科课程 专题5 基于 SLR(1)分析的语义分析及中间代码生成程序设计

一、程序功能描述 本程序由C/C++编写,实现了赋值语句语法制导生成四元式,并完成了语法分析和语义分析过程。 以专题 1 词法分析程序的输出为语法分析的输入,完成以下描述赋值语句 SLR(1)文法的语义分析及中间代码四元式的过程,实现编译器前端。 G[S]:     S→V=E E→E+T∣E-T∣T T→T*F∣T/F∣F F→(E)∣i V→i 二、主要数据结构描述

深度学习本科课程 实验3 网络优化

一、在多分类任务实验中实现momentum、rmsprop、adam优化器 1.1 任务内容 在手动实现多分类的任务中手动实现三种优化算法,并补全Adam中计算部分的内容在torch.nn实现多分类的任务中使用torch.nn实现各种优化器,并对比其效果 1.2 任务思路及代码 import torchimport torch.nn as nnimport torch.optim as