多阶专题

YoloV7改进策略:卷积改进|MogaNet——高效的多阶门控聚合网络

文章目录 摘要论文:《MogaNet——高效的多阶门控聚合网络》1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务

YoloV5改进策略:卷积改进|MogaNet——高效的多阶门控聚合网络

文章目录 摘要论文:《MogaNet——高效的多阶门控聚合网络》1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务

YoloV7改进策略:Block改进|MogaNet——高效的多阶门控聚合网络

文章目录 摘要论文:《MogaNet——高效的多阶门控聚合网络》1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务

YoloV5改进策略:主干网络改进|MogaNet——高效的多阶门控聚合网络

文章目录 摘要论文:《MogaNet——高效的多阶门控聚合网络》1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务

YoloV7改进策略:主干网络改进_MogaNet——高效的多阶门控聚合网络

文章目录 摘要论文:《MogaNet——高效的多阶门控聚合网络》1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务

MogaNet:高效的多阶门控聚合网络

文章目录 摘要1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务5.3、消融实验和分析 6、结论致谢A、实现细节A.1、架构细节A.2、ImageNet

YoloV8改进策略:主干网络改进|MogaNet——高效的多阶门控聚合网络

文章目录 摘要1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务5.3、消融实验和分析

MogaNet:高效的多阶门控聚合网络

文章目录 摘要1、简介2、相关工作2.1、视觉Transformers2.2、ViT时代的卷积网络 3、从多阶博弈论交互的角度看表示瓶颈4、方法论4.1、MogaNet概述4.2、多阶门控聚合4.3、通过通道聚合进行多阶特征重新分配4.4、实现细节 5、实验5.1、ImageNet分类5.2、密集预测任务5.3、消融实验和分析

基于comsol的压力声学-热黏性声学模块模拟一种具有多阶吸声的低频宽带薄超表面

研究背景: 由于传统材料的能量耗散较弱,低频吸声一直是研究人员面临的一个具有挑战性的课题。近年来,声学超材料发展迅速,具有前所未有的优异低频性能。已经设计了一系列亚波长厚度的超材料,以实现对低频声音的100%吸收。例如,由弹性膜和刚性盘组成的膜型超材料可以吸收某些频率下几乎所有的入射声能,其厚度甚至比峰值吸收波长小两个数量级。然而,由于薄膜柔软,它很容易受到机械损伤。卷曲空间超材料是另一种重要的