首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
保涨专题
Generalized Focal Loss:Focal loss魔改以及预测框概率分布,保涨点 | NeurIPS 2020
为了高效地学习准确的预测框及其分布,论文对Focal loss进行拓展,提出了能够优化连续值目标的Generalized Focal loss,包含Quality Focal loss和Distribution Focal loss两种具体形式。QFL用于学习更好的分类分数和定位质量的联合表示,DFL通过对预测框位置进行general分布建模来提供更多的信息以及准确的预测。从实验结果来看,GF
阅读更多...