首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
中组专题
深度学习中组卷积(Group convolution)、深度卷积(Depthwise Convolution)以及深度可分离卷积(Depthwise Separable Convolution)的区别
在轻量化网络中,经常使用组卷积、深度卷积或是深度可分离卷积来降低FLOPs,那么三者的区别在哪里呢?下面总结一下。 一、标准卷积 下面是用一个卷积核对输入特征做一次卷积,得到的输出特征的通道为1。 二、组卷积 组卷积是将输入特征按通道分为g组,每组特征中的通道数为 C i n g \frac{C_{in}}{g} gCin,所以相应的卷积核的大小也变了,通道数变少了。每次卷积后的特征按通
阅读更多...