yolo4专题

AI深度学习项目-yolo4_tiny 垃圾分类识别系统

项目概述 目标 本项目旨在开发一个高效的垃圾分类识别系统,利用深度学习技术特别是YOLOv4-tiny版本来实现垃圾的自动分类。YOLOv4-tiny作为YOLOv4的一个轻量化版本,在保证较高精度的同时,能够提供更快的检测速度,非常适合资源受限的设备或者要求实时性的应用场景。 技术栈 深度学习框架:PyTorch目标检测算法:YOLOv4-tiny编程语言:Python硬件加速:G

基于Python的垃圾分类检测识别系统(Yolo4网络)【W8】

简介:         垃圾分类检测识别系统旨在利用深度学习和计算机视觉技术,实现对不同类别垃圾的自动识别和分类。应用环境包括Python编程语言、主流深度学习框架如TensorFlow或PyTorch,以及图像处理库OpenCV等,通过这些工具集成和优化模型,实现高效、精准的垃圾分类,为环境保护和可持续发展提供技术支持。 界面图: 系统介绍:  1. 网络模型