vgg13专题

Tensorflow2.0笔记 - 使用卷积神经网络层做CIFA100数据集训练(类VGG13)

本笔记记录CNN做CIFAR100数据集的训练相关内容,代码中使用了类似VGG13的网络结构,做了两个Sequetial(CNN和全连接层),没有用Flatten层而是用reshape操作做CNN和全连接层的中转操作。由于网络层次较深,参数量相比之前的网络多了不少,因此只做了10次epoch(RTX4090),没有继续跑了,最终准确率大概在33.8%左右。 import osi

主干网络篇 | YOLOv5/v7 更换主干网络为 VGG13 / VGG16 / VGG19 | 对比实验必备

论文地址:https://arxiv.org/pdf/1409.1556.pdf 在这项工作中,我们研究了卷积网络深度对其在大规模图像识别环境中准确性的影响。我们的主要贡献是对使用非常小(3×3)卷积滤波器的架构的不断增加深度的网络进行了彻底评估,这表明通过将深度推进到16-19个权重层,可以在先前的艺术配置上取得显著改进。这些发现是我们2014年ImageNet挑战赛提交的基础,在该挑