首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
transxnet专题
YOLOv8独家改进:backbone改进 | TransXNet:聚合全局和局部信息的全新CNN-Transformer视觉主干| CVPR2024
💡💡💡本文独家改进:CVPR2024 TransXNet助力检测,代替YOLOv8 Backbone 改进结构图如下: 收录 YOLOv8原创自研 https://blog.csdn.net/m0_63774211/category_12511737.html?spm=1001.2014.3001.5482 💡💡💡全网独家首发创新(原创),适合paper !!!
阅读更多...
TransXNet实战:使用 TransXNet实现图像分类任务(二)
文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上一篇文章中完成了前期的准备工作,见链接: TransXNet实战:使用TransXNet实现图像分类任务(一) 前期的工作主要是数据的
阅读更多...
TransXNet实战:使用TransXNet实现图像分类任务(一)
文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集 摘要 论文提出了一种名为D-Mixer的轻量级双动态TokenMixer,旨在解决传统卷积的静态性质导致的表示差异和特征融合问题。D-Mixer通过应用高效的全局注意力和输入依赖的深度卷积,分别对均匀分割的特征片段进行处理,使网络具有强大的归纳偏置和更大的有效感受野。以
阅读更多...
YoloV7改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现YoloV7的有效涨点
摘要 双动态令牌混合器(D-Mixer),一种输入依赖的方式聚合全局信息和局部细节。D-Mixer通过分别在均匀分割的特征片段上应用有效的全局注意力模块和输入依赖的深度卷积,使网络具有强大的归纳偏差和扩大的有效感受野。使用D-Mixer作为基本构建块设计了TransXNet,这是一种新型的混合CNN-Transformer视觉主干网络,可提供引人注目的性能。在ImageNet-1K图像分类任务中
阅读更多...
TransXNet:使用双动态令牌混合器学习全局和局部动态以实现视觉识别
文章目录 摘要1、简介2、相关研究3、 方法4、实验5、局限性6、结论 摘要 https://arxiv.org/pdf/2310.19380.pdf 最近的研究将卷积与transformer相结合,以引入归纳偏置并提高泛化性能。然而,常规卷积的静态性质使其无法动态适应输入的变化,导致卷积和自注意力之间的表示差异,因为自注意力动态计算注意力矩阵。此外,当堆叠由卷积和自注意力组成的
阅读更多...
RT-DETR改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现RT-DETR的有效涨点
摘要 双动态令牌混合器(D-Mixer),一种输入依赖的方式聚合全局信息和局部细节。D-Mixer通过分别在均匀分割的特征片段上应用有效的全局注意力模块和输入依赖的深度卷积,使网络具有强大的归纳偏差和扩大的有效感受野。使用D-Mixer作为基本构建块设计了TransXNet,这是一种新型的混合CNN-Transformer视觉主干网络,可提供引人注目的性能。在ImageNet-1K图像分类任务中
阅读更多...
RT-DETR改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现RT-DETR的有效涨点
摘要 双动态令牌混合器(D-Mixer),一种输入依赖的方式聚合全局信息和局部细节。D-Mixer通过分别在均匀分割的特征片段上应用有效的全局注意力模块和输入依赖的深度卷积,使网络具有强大的归纳偏差和扩大的有效感受野。使用D-Mixer作为基本构建块设计了TransXNet,这是一种新型的混合CNN-Transformer视觉主干网络,可提供引人注目的性能。在ImageNet-1K图像分类任务中
阅读更多...