首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
task07专题
DataWhale-(scikit-learn教程)-Task07(集成学习)-202112
一、基本原理 集成学习(ensemble learning) 通过构建并结合多个学习器来完成学习任务,以提高比单个学习器更好的泛化和稳定性能。要获得好的集成效果,个体学习器应该“好而不同”。按照个体学习器的生成方式,集成学习可分为两类:序列集成方法,即个体学习器存在强依赖关系,必须串行生成,如Boosting;并行集成方法,即个体学习器不存在强依赖关系,可以并行生成,如Bagging,随机森林。
阅读更多...
DataWhale-(scikit-learn教程)-Task07(集成学习)-202112
一、基本原理 集成学习(ensemble learning) 通过构建并结合多个学习器来完成学习任务,以提高比单个学习器更好的泛化和稳定性能。要获得好的集成效果,个体学习器应该“好而不同”。按照个体学习器的生成方式,集成学习可分为两类:序列集成方法,即个体学习器存在强依赖关系,必须串行生成,如Boosting;并行集成方法,即个体学习器不存在强依赖关系,可以并行生成,如Bagging,随机森林。
阅读更多...