首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
simsppf专题
解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC
SPP与SPPF 一、SPP的应用的背景 在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢? 通常来说,我们有以下几种方法: (1)对输入进行resize操作,让他们统统变成你设计的层的输入规格那样。但是这样过于暴力直接,可能会丢失很多信息或者多出很多不该有的信息(图片变形等),影响最终的结果。 (2)替换网络中的全连接层,对最后的卷积层使用globa
阅读更多...
解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC
SPP与SPPF 一、SPP的应用的背景 在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢? 通常来说,我们有以下几种方法: (1)对输入进行resize操作,让他们统统变成你设计的层的输入规格那样。但是这样过于暴力直接,可能会丢失很多信息或者多出很多不该有的信息(图片变形等),影响最终的结果。 (2)替换网络中的全连接层,对最后的卷积层使用globa
阅读更多...
YOLOv5算法进阶改进(7)— 将主干网络SPPF更换为SimSPPF / SPP-CSPC / SPPF-CSPC
前言:Hello大家好,我是小哥谈。SimSPPF是YOLOv6中提出的一种改进的空间金字塔池化方法,它是SPPF的升级版。SimSPPF通过在不同尺度上使用不同大小的池化核来提取特征,从而提高了检测器的性能。与SPPF相比,SimSPPF可以在不增加计算成本的情况下提高检测器的性能。本节课就教大家如何将主干网络中的SPPF更换为SimSPPF / SPP-CSPC / SPPF-CSPC,
阅读更多...