recsys专题

C3_W2_Collaborative_RecSys_Assignment_吴恩达_中英_Pytorch

Practice lab: Collaborative Filtering Recommender Systems(实践实验室:协同过滤推荐系统) In this exercise, you will implement collaborative filtering to build a recommender system for movies. 在本次实验中,你将实现协同过滤来构建一个电

C3_W2_Collaborative_RecSys_Assignment_吴恩达_中英_Pytorch

Practice lab: Collaborative Filtering Recommender Systems(实践实验室:协同过滤推荐系统) In this exercise, you will implement collaborative filtering to build a recommender system for movies. 在本次实验中,你将实现协同过滤来构建一个电

RecSys - DHE (Deep Hash Embedding)

论文:Learning to Embed Categorical Features without Embedding Tables for Recommendation 1. Introduction   embedding learning 很重要,是模型的奠基石。本文面向类别特征(如id类)。但在RecSys中面临很多挑战:    - huge vocabulary size:RecSy