pathological专题

Multitask Classification of Breast Cancer Pathological Images Using SE-DenseNet

摘要: 本文采用密集连接的卷积网络(DenseNet)结构,吸收SeNet,对一组苏木精和伊红(H&E)染色乳腺组织学显微镜 Camelyon16 进行多任务分类。全幻灯片图像(WSI)通常存储在多分辨率金字塔中,我们的数据集包含Camelyon16 在*5、*20、*40,三倍放大率下的patches。 我们的多任务是通过连接同一网络末端的两个分类器来识别patches的放大率并区分提取的pa