neurad专题

NeRF从入门到放弃5: Neurad代码实现细节

Talk is cheap, show me the code。 CNN Decoder 如patch设置为32x32,patch_scale设置为3,则先在原图上采样96x96大小的像素块,然后每隔三个取一个像素,降采样成32x32的块。 用这32x32个像素render feature,再经过CNN反卷积预测出96x96的像素,与真值对比。 def _patches_from_c

【论文笔记】NeuRAD: Neural Rendering for Autonomous Driving

原文链接:https://arxiv.org/abs/2311.15260 1. 引言 神经辐射场(NeRF)应用在自动驾驶中,可以创建可编辑的场景数字克隆(可自由编辑视角和场景物体),以进行仿真。但目前的方法或者需要大量的训练时间,或者对传感器的建模过于简单(导致仿真和真实数据的间隙),或者性能较低。 本文提出NeuRAD,一种可编辑的新视图合成模型。该方法可以处理大型自动驾驶场景,建模了

【论文笔记】NeuRAD: Neural Rendering for Autonomous Driving

原文链接:https://arxiv.org/abs/2311.15260 1. 引言 神经辐射场(NeRF)应用在自动驾驶中,可以创建可编辑的场景数字克隆(可自由编辑视角和场景物体),以进行仿真。但目前的方法或者需要大量的训练时间,或者对传感器的建模过于简单(导致仿真和真实数据的间隙),或者性能较低。 本文提出NeuRAD,一种可编辑的新视图合成模型。该方法可以处理大型自动驾驶场景,建模了