mapss专题

基于机器学习的C-MAPSS涡扇发动机RUL预测

美国国家航空航天局的商用模块化航空推进仿真系统(CMAPSS)所模拟出的涡扇发动机性能退化数据进行实验验证,数据中包含有风扇、涡轮、压气机等组件参数。C-MAPSS中所包含的数据集可以模拟出从海平面到42千英尺的高度,从0到0.9马赫的速度以及从60到100的油门杆角度。同时在每次循环的某一时间点开始会设置指定故障,并且故障在剩余循环继续存在,从而可以确定故障出现在哪一时刻,所以该数据集被普遍用作

C-MAPSS数据集探索性分析

实验数据为商用模块化航空推进系统仿真C-MAPSS数据集,该数据集为NASA格林中心为2008年第一届预测与健康管理国际会议(PHM08)竞赛提供的引擎性能退化模拟数据集,数据集整体信息如下所示: 涡扇发动机仿真模拟模型如下图所示。 仿真建模主要针对发动机气路部分,主要包含风扇扇叶(Fan)、低压压气机(LPC)、高压压气机(HPC)、燃烧室(Combustor)、低压转子

机械寿命预测(基于NASA C-MAPSS数据的剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释)

1.效果视频:机械寿命预测(NASA涡轮风扇发动机剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释)_哔哩哔哩_bilibili 环境库版本: 2.数据来源:https://www.nasa.gov/intelligent-systems-division 数据文件夹  数据介绍:  当前基于机器学习的剩余寿命预测方法的研究异常火爆,其中C-MAPS