ltr专题

Elasticsearch:使用 LTR 进行个性化搜索

作者:来自 Elastic Max Jakob 如今,用户已经开始期待根据个人兴趣定制搜索结果。如果我们听的所有歌曲都是摇滚歌曲,那么在搜索 “Crazy” 时,我们会期望 Aerosmith 的歌曲排在搜索结果的首位,而不是 Gnarls Barkley 的歌曲。在本文中,我们将介绍个性化搜索的方法,然后以音乐偏好为例,深入探讨如何使用学习排名 (learning-to-rank: LTR

达观数据:用好学习排序 (LTR) ,资讯信息流推荐效果翻倍

序言 达观数据是一家基于文本语义理解为企业提供自动抽取、审核、纠错、推荐、搜索、写作等系统服务的人工智能企业,其中在推荐场景上我们也服务了很多客户企业,客户在要求推荐服务稳定、需求响应及时的基础上,对系统的效果也提出了越来越高的期望,这对算法团队也是一个挑战。本文将从资讯信息流这个场景入手,先简单介绍达观推荐引擎的架构演化,同时尽可能详细的介绍学习排序这个核心技术的实践和落地经验。 达观推荐引