jepa专题

【论文精读】I-JEPA

摘要        计算机视觉中,常采用基于不变性和基于生成的方法进行自监督学习。对比学习(CL)是典型的基于不变性的方法,通过预训练方法优化编码器,使其能生成同一图像的两个或多个视图的相似嵌入,其中图像视图通常由一组手工设计的数据增强来构建,如随机缩放、裁剪和颜色抖动等。尽管基于不变性的预训练方法可以生成高语义级别的表示,但其特定于手工设计的数据增强方法会引入特定偏差,以至于对具有不同数据分布

追赶OpenAI的Sora:Meta开源V-JEPA,让AI学会认识世界!

就在Sora疯狂刷屏那天,还有两款重磅产品发布:一个是谷歌的Gemini 1.5,首个支持100万tokens上下文的大模型;另外一个便是全球科技、社交巨头Meta的V-JEPA。 有趣的是,在功能方面V-JEPA与Sora有很多相似之处,例如,都具备让AI学会如何通过自我监督学习认识、模拟世界,以提升生成视频的质量、表示学习方法和扩大视频训练数据范围。 可惜那天全世界的目光都聚焦在Sora身