ichallenge专题

VGG识别眼疾iChallenge-PM

内容都是百度AIstudio的内容,我只是在这里做个笔记,不是原创。 VGG是当前最流行的CNN模型之一,2014年由Simonyan和Zisserman提出,其命名来源于论文作者所在的实验室Visual Geometry Group。AlexNet模型通过构造多层网络,取得了较好的效果,但是并没有给出深度神经网络设计的方向。VGG通过使用一系列大小为3x3的小尺寸卷积核和pooling层构造深

AlexNet识别眼疾iChallenge-PM

内容都是百度AIstudio的内容,我只是在这里做个笔记,不是原创。 AlexNet 通过上面的实际训练可以看到,虽然LeNet在手写数字识别数据集上取得了很好的结果,但在更大的数据集上表现却并不好。自从1998年LeNet问世以来,接下来十几年的时间里,神经网络并没有在计算机视觉领域取得很好的结果,反而一度被其它算法所超越,原因主要有两方面,一是神经网络的计算比较复杂,对当时计算机的算力来说

简易机器学习笔记(九)LeNet实例 - 在眼疾识别数据集iChallenge-PM上的应用

前言 上一节大概讲了一下LeNet的内容,这一章就直接来用,实际上用一下LeNet来进行训练和分类试试。 调用的数据集: https://aistudio.baidu.com/datasetdetail/19065 说明: 如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近视会拉长眼睛的光轴,也可能引起视网膜或者络网膜的病变。随着近视度数的不断加

GoogLeNet识别眼疾iChallenge-PM

内容都是百度AIstudio的内容,我只是在这里做个笔记,不是原创。 GoogLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有“宽度”。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核大小来提取特征就显得比较困难了。空间分布范围更广的图像信息适合用较大的卷积核来提取其特征,而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。为了解决